Skip to main content
Log in

Different methods for solving STEM problems

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We first present a local convergence analysis for some families of fourth and six order methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Earlier studies have used hypotheses on the fourth Fréchet-derivative of the operator involved. We use hypotheses only on the first Fréchet-derivative in one local convergence analysis. This way, the applicability of these methods is extended. Moreover, the radius of convergence and computable error bounds on the distances involved are also given in this study based on Lipschitz constants. Numerical examples illustrating the theoretical results are also presented in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Amat, S. Busquier, J.M. Gutiérrez, Geometric constructions of iterative functions to solve nonlinear equations. J. Comput. Appl. Math. 157, 197–205 (2003)

    Article  Google Scholar 

  2. S. Amat, S., Busquier, Á. A. Magreñán, Reducing chaos and bifurcations in Newton-type methods. Abstr. Appl. Anal. 2013, art. no. 726701 (2013)

  3. S. Amat, Á.A. Magreñán, N. Romero, On a two-step relaxed Newton-type method Appl. Math. Comput. 219(24), 11341–11347 (2013)

    Google Scholar 

  4. S. Amat, S. Busquier, C. Bermúdez, Á.A. Magreñán, On the election of the damped parameter of a two-step relaxed Newton-type method. Nonlinear Dyn. 84(1), 9–18 (2016)

    Article  Google Scholar 

  5. S. Amat, S. Busquier, Á.A. Magreñán, Improving the dynamics of Steffensen-type methods. Appl. Math. Inf. Sci. 9(5), 2403–2408 (2015)

    Google Scholar 

  6. I.K. Argyros, Quadratic equations and applications to Chandrasekhar’s and related equations. Bull. Austr. Math. Soc. 32, 275–292 (1985)

    Article  Google Scholar 

  7. I.K. Argyros, D. Chen, Results on the Chebyshev method in Banach spaces. Proyecciones 12(2), 119–128 (1993)

    Article  Google Scholar 

  8. I.K. Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space. J. Math. Anal. Appl. 298, 374–397 (2004)

    Article  Google Scholar 

  9. I.K. Argyros, Computational theory of iterative methods, in Series: Studies in Computational Mathematics, vol. 15, ed. by C.K. Chui, L. Wuytack (Elsevier Publ. Co., New York, 2007)

    Google Scholar 

  10. I.K. Argyros, S. Hilout, Weaker conditions for the convergence of Newton’s method. J. Complex. 28, 364–387 (2012)

    Article  Google Scholar 

  11. I.K. Argyros, S. Hilout, Numerical Methods in Nonlinear Analysis (World Scientific Publ. Comp., New Jersey, 2013)

    Google Scholar 

  12. V. Candela, A. Marquina, Recurrence relations for rational cubic methods II: the Chebyshev method. Computing 45, 355–367 (1990)

    Article  Google Scholar 

  13. C. Chun, P. Stanica, B. Neta, Third order family of methods in Banach spaces. Comput. Math. Appl. 61, 1665–1675 (2011)

    Article  Google Scholar 

  14. J. Divya, Families of Newton-like methos with fourth-order convergence. Int. J. Comput. Math. 90(5), 1072–1082 (2013)

    Article  Google Scholar 

  15. A. Fraile, E. Larrodé, Á.A. Magreñán, J.A. Sicilia, Decision model for siting transport and logistic facilities in urban environments: a methodological approach. J. Comput. Appl. Math. 291, 478–487 (2016)

    Article  Google Scholar 

  16. Y.H. Geum, Y.I. Kim, Á.A. Magreñán, A biparametric extension of King’s fourth-order methods and their dynamics. Appl. Math. Comput. 282, 254–275 (2016)

    Google Scholar 

  17. J.M. Gutiérrez, Á.A. Magreñán, N. Romero, On the semilocal convergence of Newton–Kantorovich method under center-Lipschitz conditions. Appl. Math. Comput. 221, 79–88 (2013)

    Google Scholar 

  18. J.M. Gutiérrez, Á.A. Magreñán, J.L. Varona, The “Gauss-Seidelization” of iterative methods for solving nonlinear equations in the complex plane. Appl. Math. Comput. 218(6), 2467–2479 (2011)

    Google Scholar 

  19. J.M. Gutiérrez, M.A. Hernández, Recurrence relations for the super-Halley method. Comput. Math. Appl. 36, 1–8 (1998)

    Article  Google Scholar 

  20. M.A. Hernández, M.A. Salanova, Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev method. J. Comput. Appl. Math. 126, 131–143 (2000)

    Article  Google Scholar 

  21. M.A. Hernández, Chebyshev’s approximation algorithms and applications. Comput. Math. Appl. 41, 433–455 (2001)

    Article  Google Scholar 

  22. J.L. Hueso, E. Martínez, C. Teruel, Convergence, efficiency and dynamics of new fourth and sixth order families of iterative methods for nonlinear systems. J. Comput. Appl. Math. 275, 412–420 (2015)

    Article  Google Scholar 

  23. L.V. Kantorovich, G.P. Akilov, Functional Analysis (Pergamon Press, Oxford, 1982)

    Google Scholar 

  24. Á.A. Magreñán, A. Cordero, J.M. Gutiérrez, J.R. Torregrosa, Real qualitative behavior of a fourth-order family of iterative methods by using the convergence plane. Math. Comput. Simul. 105, 49–61 (2014)

    Article  Google Scholar 

  25. Á.A. Magreñán, J.M. Gutiérrez, Real dynamics for damped Newton’s method applied to cubic polynomials. J. Comput. Appl. Math. 275, 527–538 (2015)

    Article  Google Scholar 

  26. Á.A. Magreñán, Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 233, 29–38 (2014)

    Google Scholar 

  27. Á.A. Magreñán, A new tool to study real dynamics: the convergence plane. Appl. Math. Comput. 248, 215–224 (2014)

    Google Scholar 

  28. J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, New York, 1970)

    Google Scholar 

  29. W.C. Rheinboldt, An adaptive continuation process for solving systems of nonlinear equations. Banach Center Publ. 3, 129–142 (1978)

    Article  Google Scholar 

  30. J.R. Sharma, Improved Chebyshev–Halley methods with sixth and eighth order of convergence. Appl. Math. Comput. 256, 119–124 (2015)

    Google Scholar 

  31. J.F. Traub, Iterative Methods for the Solution of Equations (Prentice-Hall Series in Automatic Computation, Englewood Cliffs, 1964)

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by Ministerio de Economía y Competitividad under Grant MTM2014-52016-C2-1P. This research was supported by Universidad Internacional de La Rioja (UNIR, http://www.unir.net), under the Plan Propio de Investigación, Desarrollo e Innovación 3 [2015–2017]. Research group: MAPPING and by the Grant SENECA 19374/PI/14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Orcos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argyros, I.K., Magreñán, Á.A., Orcos, L. et al. Different methods for solving STEM problems. J Math Chem 57, 1268–1281 (2019). https://doi.org/10.1007/s10910-018-0950-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-018-0950-1

Keywords

Navigation