Journal of Mathematical Chemistry

, Volume 56, Issue 10, pp 2876–2897 | Cite as

Adapted numerical modelling of the Belousov–Zhabotinsky reaction

  • Raffaele D’Ambrosio
  • Martina Moccaldi
  • Beatrice Paternoster
  • Federico Rossi
Original Paper


Adapted numerical schemes for the integration of differential equations generating periodic wavefronts have reported benefits in terms of accuracy and stability. This work is focused on differential equations modelling chemical phenomena which are characterized by an oscillatory dynamics. The adaptation is carried out through the exponential fitting technique, which is specially suitable to follow the apriori known qualitative behavior of the solution. In particular, we have merged this strategy with the information coming from existing theoretical studies and especially the observation of time series. Numerical tests will be provided to show the effectiveness of this problem-oriented approach.


Oscillating solutions Exponential fitting Adapted Runge–Kutta methods Parameter estimation Reaction equations Belousov–Zhabotinsky reaction Chemical oscillators 



Raffaele D’Ambrosio, Martina Moccaldi and Beatrice Paternoster are members of the INdAM Research group GNCS. The work is supported by GNCS-Indam project.


  1. 1.
    P. Albrecht, A new theoretical approach to RK methods. SIAM J. Numer. Anal. 24(2), 391–406 (1987)CrossRefGoogle Scholar
  2. 2.
    B.P. Belousov, An oscillating reaction and its mechanism, Sborn. referat. radiat. med. (Collection of abstracts on radiation medicine), Medgiz (1959)Google Scholar
  3. 3.
    M.A. Budroni, F. Rossi, A novel mechanism for in situ nucleation of spirals controlled by the interplay between phase fronts and reaction–diffusion waves in an oscillatory medium. J. Phys. Chem. C 119(17), 9411–9417 (2015)CrossRefGoogle Scholar
  4. 4.
    A. Cardone, LGr Ixaru, B. Paternoster, Exponential fitting direct quadrature methods for Volterra integral equations. Numer. Algorithms 55(4), 467–480 (2010)CrossRefGoogle Scholar
  5. 5.
    R. D’Ambrosio, E. Esposito, B. Paternoster, Exponentially fitted two-step hybrid methods for \(y^{\prime \prime }=f(x, y)\). J. Comput. Appl. Math. 235(16), 4888–4897 (2011)CrossRefGoogle Scholar
  6. 6.
    R. D’Ambrosio, E. Esposito, B. Paternoster, Exponentially fitted two-step Runge–Kutta methods: construction and parameter selection. Appl. Math. Comput. 218(14), 7468–7480 (2012)Google Scholar
  7. 7.
    R. D’Ambrosio, E. Esposito, B. Paternoster, Parameter estimation in exponentially fitted hybrid methods for second order differential problems. J. Math. Chem. 50(1), 155–168 (2012)CrossRefGoogle Scholar
  8. 8.
    R. D’Ambrosio, M. Moccaldi, B. Paternoster, Adapted numerical methods for advection-reaction-diffusion problems generating periodic wavefronts. Comput. Math. Appl. 74(5), 1029–1042 (2017)CrossRefGoogle Scholar
  9. 9.
    R. D’Ambrosio, M. Moccaldi, B. Paternoster, F. Rossi, On the employ of time series in the numerical treatment of differential equations modeling oscillatory phenomena. Commun. Comput. Inf. Sci. 708, 179–187 (2017)Google Scholar
  10. 10.
    R. D’Ambrosio, M. Moccaldi, B. Paternoster, F. Rossi, Stochastic Numerical Models of Oscillatory Phenomena, in Artificial Life and Evolutionary Computation, Wivace 2017 Workshop, Venice, 19-21 September 2017, Springer (2018)Google Scholar
  11. 11.
    R. D’Ambrosio, B. Paternoster, Numerical solution of a diffusion problem by exponentially fitted finite difference methods, SpringerPlus 3(1), (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    R. D’Ambrosio, B. Paternoster, Numerical solution of reaction-diffusion systems of \(\lambda \)\(\omega \) type by trigonometrically fitted methods. J. Comput. Appl. Math. 294(C), 436–445 (2016)CrossRefGoogle Scholar
  13. 13.
    R. D’Ambrosio, B. Paternoster, G. Santomauro, Revised exponentially fitted Runge–Kutta–Nyström methods. Appl. Math. Lett. 30, 56–60 (2014)CrossRefGoogle Scholar
  14. 14.
    I.R. Epstein, J.A. Pojman, An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos (Oxford University Press, New York, 1998)Google Scholar
  15. 15.
    I.R. Epstein, B. Xu, Reaction-diffusion processes at the nano- and microscales. Nat. Nanotechnol. 11(4), 312–319 (2016)CrossRefPubMedGoogle Scholar
  16. 16.
    R.J. Field, M. Burger, Oscillations and Traveling Waves in Chemical Systems (Wiley, New York, 1985)Google Scholar
  17. 17.
    R,J. Field, E. Körös, R.M. Noyes, Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in bromate-cerium-malonic acid system. J. Am. Chem. Soc. 94, 8649–8664 (1972)CrossRefGoogle Scholar
  18. 18.
    R.J. Field, R.M. Noyes, Oscillations in chemical systems. IV. Limit cycle behaviour in a model of a real chemical reaction. J. Chem. Phys. 60, 1877–1884 (1974)CrossRefGoogle Scholar
  19. 19.
    W. Gautschi, Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)CrossRefGoogle Scholar
  20. 20.
    LGr Ixaru, B. Paternoster, A conditionally P-stable fourth-order exponential-fitting method for \(y^{\prime \prime }=f(x, y)\). J. Comput. Appl. Math. 106(1), 87–98 (1999)CrossRefGoogle Scholar
  21. 21.
    LGr Ixaru, G. Vanden Berghe, Exponential Fitting (Kluwer, Dordrecht, 2004)CrossRefGoogle Scholar
  22. 22.
    N. Marchettini, M.A. Budroni, F. Rossi, M. Masia, M.L.T. Liveri, M. Rustici, Role of the reagents consumption in the chaotic dynamics of the Belousov–Zhabotinsky oscillator in closed unstirred reactors. Phys. Chem. Chem. Phys. 12(36), 11062–11069 (2010)CrossRefPubMedGoogle Scholar
  23. 23.
    J.D. Murray, Mathematical Biology (Springer, New York, 2004)CrossRefGoogle Scholar
  24. 24.
    B. Paternoster, Runge–Kutta(-Nyström) methods for ODEs with periodic solutions based on trigonometric polynomials. Appl. Numer. Math. 28(2), 401–412 (1998)CrossRefGoogle Scholar
  25. 25.
    B. Paternoster, Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70th birthday. Comput. Phys. Commun. 183, 2499–2512 (2012)CrossRefGoogle Scholar
  26. 26.
    F. Rossi, M.A. Budroni, N. Marchettini, J. Carballido-Landeira, Segmented waves in a reaction–diffusion–convection system, Chaos: an interdisciplinary. J. Nonlinear Sci. 22(3), 037109 (2012)Google Scholar
  27. 27.
    F. Rossi, M.A. Budroni, N. Marchettini, L. Cutietta, M. Rustici, M.L.T. Liveri, Chaotic dynamics in an unstirred ferroin catalyzed Belousov–Zhabotinsky reaction. Chem. Phys. Lett. 480, 322–326 (2009)CrossRefGoogle Scholar
  28. 28.
    F. Rossi, S. Ristori, M. Rustici, N. Marchettini, E. Tiezzi, Dynamics of pattern formation in biomimetic systems. J. Theor. Biol. 255(4), 404–412 (2008)CrossRefPubMedGoogle Scholar
  29. 29.
    S.K. Scott, Oscillations, Waves and Chaos in Chemical Kinetics (Oxford University Press, Oxford, 1994)Google Scholar
  30. 30.
    T.P. Souza, J. Perez-Mercader, Entrapment in giant polymersomes of an inorganic oscillatory chemical reaction and resulting chemo-mechanical coupling. Chem. Commun. 50(64), 8970–8973 (2014)CrossRefGoogle Scholar
  31. 31.
    R. Tamate, T. Ueki, M. Shibayama, R. Yoshida, Self-oscillating vesicles: spontaneous cyclic structural change of synthetic diblock copolymers. Angew. Chem. Int. Ed. 53(42), 11248–11252 (2014)CrossRefGoogle Scholar
  32. 32.
    A.F. Taylor, Mechanism and phenomenology of an oscillating chemical reaction. Prog. React. Kinet. Mech. 27(4), 247–325 (2002)CrossRefGoogle Scholar
  33. 33.
    K. Torbensen, F. Rossi, O.L. Pantani, S. Ristori, A. Abou-Hassan, Interaction of the Belousov–Zhabotinsky reaction with phospholipid engineered membranes. J. Phys. Chem. B 119(32), 10224–10230 (2015)CrossRefPubMedGoogle Scholar
  34. 34.
    K. Torbensen, F. Rossi, S. Ristori, A. Abou-Hassan, Chemical communication and dynamics of droplet emulsions in networks of Belousov–Zhabotinsky micro-oscillators produced by microfluidics. Lab Chip 17(7), 1179–1189 (2017)CrossRefPubMedGoogle Scholar
  35. 35.
    K. Torbensen, S. Ristori, F. Rossi, A. Abou-Hassan, Tuning the chemical communication of oscillating microdroplets by means of membrane composition. J. Phys. Chem. C 121(24), 13256–13264 (2017)CrossRefGoogle Scholar
  36. 36.
    J.J. Tyson, A Quantitative Account of Oscillations, Bistability, and Traveling Waves in the Belousov–Zhabotinskii Reaction, Oscillations and Traveling Waves in Chemical Systems (Wiley, New York, 1985), pp. 93–144Google Scholar
  37. 37.
    J.J. Tyson, What everyone should know about the Belousov–Zhabotinsky reaction. Lect. Notes Biomath. 100, 569–587 (1994)CrossRefGoogle Scholar
  38. 38.
    A.N. Zaikin, A.M. Zhabotinsky, Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 225(5232), 535–537 (1970)CrossRefPubMedGoogle Scholar
  39. 39.
    A.M. Zhabotinsky, Periodic processes of the oxidation of malonic acid in solution (study of the kinetics of Belousov’s reaction). Biofizika 9, 306–311 (1964)Google Scholar
  40. 40.
    A.M. Zhabotinsky, F. Rossi, A brief tale on how chemical oscillations became popular: an interview with anatol Zhabotinsky. Int. J. Des. Nat. Ecodyn. 1(4), 323–326 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Raffaele D’Ambrosio
    • 1
  • Martina Moccaldi
    • 2
  • Beatrice Paternoster
    • 2
  • Federico Rossi
    • 3
  1. 1.Department of Engineering and Computer Science and MathematicsUniversity of L’AquilaL’AquilaItaly
  2. 2.Department of MathematicsUniversity of SalernoFiscianoItaly
  3. 3.Department of Chemistry and BiologyUniversity of SalernoFiscianoItaly

Personalised recommendations