Advertisement

Journal of Mathematical Chemistry

, Volume 56, Issue 5, pp 1493–1510 | Cite as

Hyper-Wiener and Wiener polarity indices of silicate and oxide frameworks

  • Micheal Arockiaraj
  • S. Ruth Julie Kavitha
  • Krishnan Balasubramanian
  • Ivan Gutman
Original Paper
  • 105 Downloads

Abstract

Molecular descriptors are graph invariants representing the chemical structure in graph-theoretical terms. There is a wide range of such descriptors and the computation of these invariants for the various chemical frameworks is a current area of research. Among these the Wiener types of indices have passed through critical tests and emerged as a useful topological index in QSAR, predictive toxicology and computer-assisted drug discovery as a starting point to reduce a large data set of chemicals. However mathematical techniques to compute hyper-Wiener index continues to pose considerable challenges, as they involve long and complex manipulations. In the present study, we develop a new technique based on vertex cut methods to compute the hyper-Wiener indices of complex silicate and oxide frameworks of current interest for the first time and obtain the analytical expressions of Wiener polarity indices for these chemical frameworks based on vertex neighborhood.

Keywords

Distance Hyper-Wiener index Silicate network Oxide network 

Notes

Acknowledgements

M. Arockiaraj is supported by Project No. SB/FTP/MS-004/2014, Science and Engineering Research Board, New Delhi, India.

References

  1. 1.
    T. Al-Fozan, P. Manuel, I. Rajasingh, R.S. Rajan, A new technique to compute Padmakar–Ivan index and Szeged index of pericondensed benzenoid graphs. J. Comput. Theor. Nanosci. 11, 1–7 (2014)CrossRefGoogle Scholar
  2. 2.
    M. Arockiaraj, J. Clement, K. Balasubramanian, Analytical expressions for topological properties of polycyclic benzenoid networks. J. Chemom. 30, 682–697 (2016)CrossRefGoogle Scholar
  3. 3.
    M. Arockiaraj, S.R.J. Kavitha, K. Balasubramanian, Vertex cut method for degree and distance-based topological indices and its applications to silicate networks. J. Math. Chem. 54, 1728–1747 (2016)CrossRefGoogle Scholar
  4. 4.
    M. Arockiaraj, A.J. Shalini, Extended cut method for edge Wiener, Schultz and Gutman indices with applications. MATCH Commun. Math. Comput. Chem. 76, 233–250 (2016)Google Scholar
  5. 5.
    A.R. Ashrafi, S. Yousefi, Computing the Wiener index of a TUC\(_{4}\)C\(_{8}\)(S) Nanotorus. MATCH Commun. Math. Comput. Chem. 57, 403–410 (2007)Google Scholar
  6. 6.
    A.Q. Baig, M. Imran, H. Ali, On topological indices of poly oxide, poly silicate, DOX, and DSL networks. Can. J. Chem. 93(7), 730–739 (2015)CrossRefGoogle Scholar
  7. 7.
    G. Cash, S. Klavžar, M. Petkovšek, Three methods for calculation of the hyper-Wiener index of molecular graphs. J. Chem. Inf. Comput. Sci. 42, 571–576 (2002)CrossRefGoogle Scholar
  8. 8.
    L. Chen, T. Li, J. Liu, Y. Shi, H. Wang, On the Wiener polarity index of lattice networks. PLoS ONE 11(12), e0167075 (2016)CrossRefGoogle Scholar
  9. 9.
    H. Deng, H. Xiao, F. Tang, On the extremal Wiener polarity index of trees with a given diameter. MATCH Commun. Math. Comput. Chem. 63, 257–264 (2010)Google Scholar
  10. 10.
    M.V. Diudea, B. Pârv, Molecular topology. 25. Hyper-Wiener index of dendrimers. J. Chem. Inf. Comput. Sci. 35(6), 1015–1018 (1995)CrossRefGoogle Scholar
  11. 11.
    A.A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications. Acta Appl. Math. 66(3), 211–249 (2001)CrossRefGoogle Scholar
  12. 12.
    A.A. Dobrynin, I. Gutman, S. Klavžar, P. Žigert, Wiener index of hexagonal systems. Acta Appl. Math. 72, 247–294 (2002)CrossRefGoogle Scholar
  13. 13.
    W. Du, X. Li, Y. Shi, Algorithms and extremal problem on Wiener polarity index. MATCH Commun. Math. Comput. Chem. 62, 235–244 (2009)Google Scholar
  14. 14.
    M. Essalih, M. El Marraki, A.E. Atmani, The Wiener index, the hyper-Wiener index and the degree distance index of the corona \(C_{m} \circ C_{n}\). Appl. Math. Sci. 8(85), 4217–4226 (2014)Google Scholar
  15. 15.
    L. Feng, A. Ilić, Zagreb, Harary and hyper-Wiener indices of graphs with a given matching number. Appl. Math. Lett. 23, 943–948 (2010)CrossRefGoogle Scholar
  16. 16.
    A. Graovac, T. Pisanski, On the Wiener index of a graph. J. Math. Chem. 8, 53–62 (1991)CrossRefGoogle Scholar
  17. 17.
    I. Gutman, S.J. Cyvin, Elementary edge-cuts in the theory of benzenoid hydrocarbons. MATCH Commun. Math. Comput. Chem. 36, 177–184 (1997)Google Scholar
  18. 18.
    I. Gutman, G. Dömötör, P.C.B. Lam, W.C. Shiu, L. Popović, Szeged indices of benzenoid hydrocarbons. Polycycl. Aromat. Compd. 8, 259–270 (1996)CrossRefGoogle Scholar
  19. 19.
    I. Gutman, B. Furtula (eds.), Novel Molecular Structure Descriptors: Theory and Applications I (University of Kragujevac, Kragujevac, 2010)Google Scholar
  20. 20.
    I. Gutman, B. Furtula (eds.), Distance in Molecular Graphs (University of Kragujevac, Kragujevac, 2012)Google Scholar
  21. 21.
    I. Gutman, B. Furtula, Hyper-Wiener index vs. Wiener index. Two highly correlated structure-descriptors. Monatsh. Chem. 134, 975–981 (2003)CrossRefGoogle Scholar
  22. 22.
    I. Gutman, S. Klavžar, An algorithm for the calculation of the Szeged index of benzenoid hydrocarbons. J. Chem. Inf. Comput. Sci. 35, 1011–1014 (1995)CrossRefGoogle Scholar
  23. 23.
    I. Gutman, S. Klavžar, A method for calculating Wiener numbers of benzenoid hydrocarbons. ACH Models Chem. 133, 389–399 (1996)Google Scholar
  24. 24.
    I. Gutman, S. Klavžar, Relations between Wiener numbers of benzenoid hydrocarbons and phenylenes. ACH Models Chem. 135, 45–55 (1998)Google Scholar
  25. 25.
    I. Gutman, S. Klavžar, A. Rajapakse, Average distances in square-cell configurations. Int. J. Quantum Chem. 76, 611–617 (2000)CrossRefGoogle Scholar
  26. 26.
    S. Hayat, M. Imran, Computation of topological indices of certain networks. Appl. Math. Comput. 240, 213–228 (2014)Google Scholar
  27. 27.
    H. Hosoya, Mathematical and chemical analysis of Wiener’s polarity number, in Topology in Chemistry: Discrete Mathematics of Molecules, ed. by D.H. Rouvray, R.B. King (Horwood, Chichester, 2002)Google Scholar
  28. 28.
    H. Hua, K.C. Das, On the Wiener polarity index of graphs. Appl. Math. Comput. 280, 162–167 (2016)Google Scholar
  29. 29.
    A. Ilić, M. Ilić, Generalizations of Wiener polarity index and terminal Wiener index. Graphs Comb. 29(5), 1403–1416 (2013)CrossRefGoogle Scholar
  30. 30.
    A. Iranmanesh, Y. Alizadeh, Computing hyper Wiener and Schultz indices of \(TUZC_{6}[p, q]\) nanotube by GAP Program. Dig. J. Nanomater. Biostruct. 4(4), 607–611 (2009)Google Scholar
  31. 31.
    P.E. John, P.V. Khadikar, J. Singh, A method of computing the \(PI\) index of benzenoid hydrocarbons using orthogonal cuts. J. Math. Chem. 42, 37–45 (2007)CrossRefGoogle Scholar
  32. 32.
    M. Karelson, Molecular Descriptors in QSAR/QSPR (Wiley, New York, 2000)Google Scholar
  33. 33.
    M. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, The hyper-Wiener index of graph operations. Comput. Appl. Math. 56, 1402–1407 (2008)CrossRefGoogle Scholar
  34. 34.
    M. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, Another aspect of graph invariants depending on the path metric and an application in nanoscience. Comput. Math. Appl. 60, 2460–2468 (2010)CrossRefGoogle Scholar
  35. 35.
    S. Klavžar, Applications of isometric embeddings to chemical graphs. DIMACS Ser. Discrete Math. Theor. Comput. Sci. 51, 249–259 (2000)CrossRefGoogle Scholar
  36. 36.
    S. Klavžar, I. Gutman, Relation between Wiener-type topological indices of benzenoid molecules. Chem. Phys. Lett. 373, 328–332 (2003)CrossRefGoogle Scholar
  37. 37.
    S. Klavžar, I. Gutman, B. Mohar, Labeling of benzenoid systems which reflects he vertex-distance relations. J. Chem. Inf. Comput. Sci. 35, 590–593 (1995)CrossRefGoogle Scholar
  38. 38.
    S. Klavžar, I. Gutman, A. Rajapakse, Wiener numbers of pericondensed benzenoid hydrocarbons. Croat. Chem. Acta 70, 979–999 (1997)Google Scholar
  39. 39.
    S. Klavžar, M.J. Nadjafi-Arani, Cut method: update on recent developments and equivalence of independent approaches. Curr. Org. Chem. 19(4), 348–358 (2015)CrossRefGoogle Scholar
  40. 40.
    S. Klavžar, P. Žigert, I. Gutman, An algorithm for the calculation of the hyper-Wiener index of benzenoid hydrocarbons. Comput. Chem. 24, 229–233 (2000)CrossRefGoogle Scholar
  41. 41.
    D.J. Klein, I. Lukovits, I. Gutman, On the definition of the hyper-Wiener index for cycle-containing structures. J. Chem. Inf. Comput. Sci. 35, 50–52 (1995)CrossRefGoogle Scholar
  42. 42.
    H. Liu, X.F. Pan, On the Wiener index of trees with fixed diameter. MATCH Commun. Math. Comput. Chem. 60, 85–94 (2008)Google Scholar
  43. 43.
    M. Liu, B. Liu, Trees with the seven smallest hyper-Wiener indices. MATCH Commun. Math. Comput. Chem. 63, 151–170 (2010)Google Scholar
  44. 44.
    M. Liu, B. Liu, On the Wiener polarity index. MATCH Commun. Math. Comput. Chem. 66, 293–304 (2011)Google Scholar
  45. 45.
    I. Lukovits, W. Linert, Polarity-numbers of cycle-containing structures. J. Chem. Inf. Comput. Sci. 38, 715–719 (1998)CrossRefGoogle Scholar
  46. 46.
    I. Lukovits, W. Linert, A novel definition of the hyper-Wiener index for cycles. J. Chem. Inf. Comput. Sci. 34, 899–902 (1994)CrossRefGoogle Scholar
  47. 47.
    P. Manuel, I. Rajasingh, Minimum metric dimension of silicate networks. Ars Comb. 98, 501–510 (2011)Google Scholar
  48. 48.
    B. Mohar, T. Pisanski, How to compute the Wiener index of a graph. J. Math. Chem. 2, 267–277 (1988)CrossRefGoogle Scholar
  49. 49.
    J. Quadras, K. Balasubramanian, K.A. Christy, Analytical expressions for Wiener indices of n-circumscribed peri-condensed benzenoid graphs. J. Math. Chem. 54(3), 823–843 (2016)CrossRefGoogle Scholar
  50. 50.
    B. Rajan, A. William, C. Grigorious, S. Stephen, On certain topological indices of silicate, honeycombs and hexagonal networks. J. Comput. Math. Sci. 3(5), 530–535 (2012)Google Scholar
  51. 51.
    M. Randić, Novel molecular descriptor for structure-property studies. Chem. Phys. Lett. 211, 478–483 (1993)CrossRefGoogle Scholar
  52. 52.
    R. Škrekovski, I. Gutman, Vertex version of the Wiener theorem. MATCH Commun. Math. Comput. Chem. 72, 295–300 (2014)Google Scholar
  53. 53.
    R. Todeschini, V. Consonni, Handbook of Molecular Descriptors (Wiley, Weinheim, 2000)CrossRefGoogle Scholar
  54. 54.
    H. Wiener, Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)CrossRefGoogle Scholar
  55. 55.
    R. Xing, B. Zhou, X. Qi, Hyper-Wiener index of unicyclic graphs. MATCH Commun. Math. Comput. Chem. 66, 315–328 (2011)Google Scholar
  56. 56.
    H. Yousefi-Azari, M.H. Khalifeh, A.R. Ashrafi, Calculating the edge Wiener and edge Szeged indices of graphs. J. Comput. Appl. Math. 235, 4866–4870 (2011)CrossRefGoogle Scholar
  57. 57.
    S. Yousefi, A.R. Ashrafi, An exact expression for the Wiener index of a polyhex nanotorus. MATCH Commun. Math. Comput. Chem. 56, 169–178 (2006)Google Scholar
  58. 58.
    Y. Zhang, Y. Hu, The Nordhaus–Gaddum-type inequality for the Wiener polarity index. Appl. Math. Comput. 273, 880–884 (2016)Google Scholar
  59. 59.
    B. Zhou, I. Gutman, Relations between Wiener, hyper-Wiener and Zagreb indices. Chem. Phys. Lett. 394, 93–95 (2004)CrossRefGoogle Scholar
  60. 60.
    P. Žigert, S. Klavžar, I. Gutman, Calculating the hyper-Wiener index of benzenoid hydrocarbons. ACH Models Chem. 137(1), 83–94 (2000)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Micheal Arockiaraj
    • 1
  • S. Ruth Julie Kavitha
    • 1
  • Krishnan Balasubramanian
    • 2
  • Ivan Gutman
    • 3
  1. 1.Department of MathematicsLoyola CollegeChennaiIndia
  2. 2.School of Molecular SciencesArizona State UniversityTempeUSA
  3. 3.Faculty of ScienceUniversity of KragujevacKragujevacSerbia

Personalised recommendations