Advertisement

Journal of Mathematical Chemistry

, Volume 56, Issue 5, pp 1467–1480 | Cite as

Interpreting nucleation as a network formation process

  • Pradumn Kumar PandeyEmail author
  • Bibhas Adhikari
  • Jayanta Chakraborty
Original Paper
  • 229 Downloads

Abstract

In this paper we interpret nucleation as a network formation process. Inspired by this interpretation we propose a social network model which produces networks with communities.

Keywords

Nucleation Crystallization Social network Communities 

References

  1. 1.
    A. Barrat, M. Barthelemy, A. Vespignani, Dynamical Processes on Complex Networks (Cambridge University Press, Cambridge, 2008)CrossRefGoogle Scholar
  2. 2.
    V. Blondel, J. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of community hierarchies in large network. J. Stat. Mech. (2008).  https://doi.org/10.1088/1742-5468/2008/10/P10008 Google Scholar
  3. 3.
    Y. Ding, Scientific collaboration and endorsement: network analysis of coauthorship and citation networks. J. Informetr. 5(1), 187–203 (2011)CrossRefGoogle Scholar
  4. 4.
    M. Girvan, M.E. Newman, Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)CrossRefGoogle Scholar
  5. 5.
    R.W. Harrison, A self-assembling neural network for modeling polymers. J. Math. Chem. 26(1–3), 125–137 (1999)CrossRefGoogle Scholar
  6. 6.
    R. Hoppe, The coordination number—an inorganic chameleon. Angew. Chem. Int. Ed. Engl. 9(1), 25–34 (1970)CrossRefGoogle Scholar
  7. 7.
    M.O. Jackson et al., Social and Economic Networks, vol. 3 (Princeton University Press, Princeton, 2008)Google Scholar
  8. 8.
    T. Miyao, H. Kaneko, K. Funatsu, Ring system-based chemical graph generation for de novo molecular design. J. Comput. Aided Mol. Des. 30(5), 425–446 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Newman, Networks: An Introduction (OUP, Oxford, 2010)CrossRefGoogle Scholar
  10. 10.
    M.E. Newman, M. Girvan, Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026–113 (2004)CrossRefGoogle Scholar
  11. 11.
    R.J. Prill, P.A. Iglesias, A. Levchenko, Dynamic properties of network motifs contribute to biological network organization. PLoS Biol. 3(11), e343 (2005)CrossRefGoogle Scholar
  12. 12.
    S. Rao, A. van der Schaft, B. Jayawardhana, A graph-theoretical approach for the analysis and model reduction of complex-balanced chemical reaction networks. J. Math. Chem. 51(9), 2401–2422 (2013)CrossRefGoogle Scholar
  13. 13.
    A.F. Wells, Structural Inorganic Chemistry (Oxford University Press, Oxford, 2012)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pradumn Kumar Pandey
    • 1
    Email author
  • Bibhas Adhikari
    • 2
  • Jayanta Chakraborty
    • 3
  1. 1.Focus Group: System Science, Department of Computer Science and EngineeringIndian Institute of Technology JodhpurJodhpurIndia
  2. 2.Department of MathematicsIndian Institute of Technology KharagpurKharagpurIndia
  3. 3.Department of Chemical EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations