Advertisement

Journal of Mathematical Chemistry

, Volume 56, Issue 4, pp 1339–1347 | Cite as

A minimal 2D model of the free energy surface for a unidirectional natural molecular motor

  • Wolfgang QuappEmail author
Original Paper

Abstract

A schematic model of a natural molecular motor is proposed. It uses the change of the free energy surface to an effective surface as long as the enzyme is active. This effective surface acts as a trapdoor and explains the power stroke in biomotors, as well as its unidirectional movement. Then a thermal relaxation can do the energy transduction of the motor. The model uses Newton trajectories to explain the movement of stationary points on the effective surface.

Keywords

Natural molecular motor Effective free energy surface Newton trajectory Barrier breakdown point Unidirectional movement 

Notes

Acknowledgements

I thank Profs. Josep Maria Bofill and Jordi Ribas-Ariño from Barcelona for many discussions.

References

  1. 1.
    A.P. Davis, Angew. Chem. 110, 953 (1998)CrossRefGoogle Scholar
  2. 2.
    C. Bustamente, Y.R. Chemla, N.R. Forde, D. Izhaky, Ann. Rev. Biochem. 73, 705 (2004)CrossRefGoogle Scholar
  3. 3.
    M. Schliwa, Molecular Motors (Wiley-VCH, Weinheim, 2003)Google Scholar
  4. 4.
    Y.M. Romanovsky, A.N. Tikhonov, Phys. Uspekhi 53, 893 (2010)CrossRefGoogle Scholar
  5. 5.
    J. Walker, Biochem. Soc. Trans. 41, 1 (2013)CrossRefGoogle Scholar
  6. 6.
    S. Mukherjee, R.P. Bora, A. Warshel, Q. Rev. Biophys. 48(4), 395 (2015)CrossRefGoogle Scholar
  7. 7.
    A. Warshel, R.P. Bora, J. Chem. Phys. 144, 180901 (2016)CrossRefGoogle Scholar
  8. 8.
    B.L. Feringa, Acc. Chem. Res. 34, 504 (2001)CrossRefGoogle Scholar
  9. 9.
    R.D. Astumian, Sci. Am. 285, 56 (2001)CrossRefGoogle Scholar
  10. 10.
    W. Mock, K. Ochwat, J. Phys. Org. Chem. 16, 175 (2003)CrossRefGoogle Scholar
  11. 11.
    E. Kay, D. Leigh, F. Zerbetto, Angew. Chem. 119, 72 (2007)CrossRefGoogle Scholar
  12. 12.
    J. Michl, E. Sykes, ACS Nano 3, 1042 (2009)CrossRefGoogle Scholar
  13. 13.
    J.P. Sauvage, P. Gaspard (eds.), From Non-covalent Assemblies to Molecular Machines (Wiley-VCH, Weinheim, 2010)Google Scholar
  14. 14.
    M. Guentner, M. Schildhauer, S. Thumser, P. Mayer, D. Stephenson, P.J. Mayer, H. Dube, Nat. Commun. 6, 8460 (2015)CrossRefGoogle Scholar
  15. 15.
    L. Greb, A. Eichhöfer, J.M. Lehn, Angew. Chem. Int. Ed. 54, 14345 (2015)CrossRefGoogle Scholar
  16. 16.
    M.R. Wilson, J. Solà, A. Carlone, S.M. Goldup, N. Lebrasseur, D.A. Leigh, Nature 534, 235 (2016)CrossRefGoogle Scholar
  17. 17.
    C. Cheng, J.F. Stoddart, ChemPhysChem 17, 1780 (2016)CrossRefGoogle Scholar
  18. 18.
    C.R. Hall, J. Conyard, I.A. Heisler, G. Jones, J. Frost, W.R. Browne, B.L. Feringa, S.R. Meech, J. Am. Chem. Soc. 139, 7408 (2017)CrossRefGoogle Scholar
  19. 19.
    C. Pezzato, C. Cheng, J.F. Stoddart, R.D. Astumian, Chem. Soc. Rev. 46, 5491 (2017)CrossRefGoogle Scholar
  20. 20.
    H. Wang, G. Oster, Nature 396, 279 (1998)CrossRefGoogle Scholar
  21. 21.
    J. Ma, T.C. Flynn, Q. Cui, A.G. Leslie, J.E. Walker, M. Karplus, Structure 10, 921 (2002)CrossRefGoogle Scholar
  22. 22.
    A. Warshel, P.K. Sharma, M. Kato, Y. Xiang, H. Liu, M.H.M. Olsson, Chem. Rev. 106(8), 3210 (2006)CrossRefGoogle Scholar
  23. 23.
    S. Mukherjee, A. Warshel, Proc. Natl. Acad. Sci. USA 108(51), 20550 (2011)CrossRefGoogle Scholar
  24. 24.
    C.T. Liu, J.P. Layfield, R.J. Stewart III, J.B. French, P. Hanoian, J.B. Asbury, S. Hammes-Schiffer, S.J. Benkovic, J. Am. Chem. Soc. 136, 10349 (2014)CrossRefGoogle Scholar
  25. 25.
    S.D. Fried, S.G. Boxer, Ann. Rev. Biochem. 86(1), 387 (2017)CrossRefGoogle Scholar
  26. 26.
    F.A. Kiani, S. Fischer, J. Biol. Chem. 288, 35569 (2013)CrossRefGoogle Scholar
  27. 27.
    S.S.M. Konda, J.M. Brantley, C.W. Bielawski, D.E. Makarov, J. Chem. Phys. 135, 164103 (2011)CrossRefGoogle Scholar
  28. 28.
    S.S.M. Konda, S.M. Avdoshenko, D.E. Makarov, J. Chem. Phys. 140, 104114 (2014)CrossRefGoogle Scholar
  29. 29.
    S.M. Avdoshenko, D.E. Makarov, J. Phys. Chem. B 120, 1537 (2015)CrossRefGoogle Scholar
  30. 30.
    S.M. Avdoshenko, D.E. Makarov, J. Chem. Phys. 142, 174106 (2015)CrossRefGoogle Scholar
  31. 31.
    D.E. Makarov, J. Chem. Phys. 144, 030901 (2016)CrossRefGoogle Scholar
  32. 32.
    W. Quapp, J.M. Bofill, Theor. Chem. Acc. 135(4), 113 (2016)CrossRefGoogle Scholar
  33. 33.
    W. Quapp, J.M. Bofill, J. Ribas-Ariño, J. Phys. Chem. A 121, 2820 (2017)CrossRefGoogle Scholar
  34. 34.
    W. Quapp, J.M. Bofill, J. Comput. Chem. 37, 2467 (2016)CrossRefGoogle Scholar
  35. 35.
    K. Henzler-Wildman, V. Thai, M. Lei, M. Ott, M. Wolf-Watz, T. Fenn, E. Pozharski, M. Wilson, G.A. Petsko, M. Karplus, C. Hubner, D. Kern, Nature 450, 838 (2007)CrossRefGoogle Scholar
  36. 36.
    H. Eying, J. Walter, G.E. Rimball, Quantum Chemistry (Wiley, New York, 1944)Google Scholar
  37. 37.
    G.I. Bell, Science 200, 618 (1978)CrossRefGoogle Scholar
  38. 38.
    M.T. Ong, J. Leiding, H. Tao, A.M. Virshup, T.J. Martínez, J. Am. Chem. Soc. 131(18), 6377 (2009)CrossRefGoogle Scholar
  39. 39.
    J. Ribas-Ariño, M. Shiga, D. Marx, Angew. Chem. Int. Ed. 48, 4190 (2009)CrossRefGoogle Scholar
  40. 40.
    K. Wolinski, J. Baker, Mol. Phys. 107, 2403 (2009)CrossRefGoogle Scholar
  41. 41.
    J. Ribas-Ariño, D. Marx, Chem. Rev. 112, 5412 (2012)CrossRefGoogle Scholar
  42. 42.
    W. Quapp, J.M. Bofill, Int. J. Quantum Chem.  https://doi.org/10.1002/qua.25522 (2017)
  43. 43.
    W. Quapp, M. Hirsch, O. Imig, D. Heidrich, J. Comput. Chem. 19, 1087 (1998)CrossRefGoogle Scholar
  44. 44.
    W. Quapp, M. Hirsch, D. Heidrich, Theor. Chem. Acc. 100(5/6), 285 (1998)CrossRefGoogle Scholar
  45. 45.
    J.M. Bofill, J.M. Anglada, Theor. Chem. Acc. 105, 463 (2001)CrossRefGoogle Scholar
  46. 46.
    R. Crehuet, J.M. Bofill, J.M. Anglada, Theor. Chem. Acc. 107, 130 (2002)CrossRefGoogle Scholar
  47. 47.
    W. Quapp, J. Theor. Comput. Chem. 2, 385 (2003)CrossRefGoogle Scholar
  48. 48.
    H.S. Smalo, V.V. Rybkin, W. Klopper, T. Helgaker, E. Uggerud, J. Phys. Chem. A 118, 7683 (2014)CrossRefGoogle Scholar
  49. 49.
    T. Stauch, A. Dreuw, Chem. Rev. 116, 14137 (2016)CrossRefGoogle Scholar
  50. 50.
    K. Adachi, K. Oiwa, T. Nishizaka, S. Furuike, H. Noji, H. Itoh, M. Yoshida, K. Kinosita Jr., Cell 130, 309 (2007)CrossRefGoogle Scholar
  51. 51.
    S. Akbulatov, Y. Tian, Z. Huang, T.J. Kucharski, Q.Z. Yang, R. Boulatov, Science 357, 299 (2017)CrossRefGoogle Scholar
  52. 52.
    E. Evans, A. Leung, H. Volkmar, C. Zhu, Proc. Natl. Acad. Sci. 101, 11281 (2004)CrossRefGoogle Scholar
  53. 53.
    A. Garai, S. Mogurampelly, S. Bag, P.K. Maiti, J. Chem. Phys. 147, 225102 (2017)CrossRefGoogle Scholar
  54. 54.
    T.L. Amyes, J.P. Richard, Biochemistry 52(12), 2021 (2013)CrossRefGoogle Scholar
  55. 55.
    B.L. Grigorenko, I.A. Kaliman, A.V. Nemukhin, J. Mol. Graph. Model. 31, 1 (2011)CrossRefGoogle Scholar
  56. 56.
    L. Pauling, Chem. Eng. News 24, 1375 (1946)CrossRefGoogle Scholar
  57. 57.
    M. Štrajbl, A. Shurki, M. Kato, A. Warshel, J. Am. Chem. Soc. 125, 10228 (2003)CrossRefGoogle Scholar
  58. 58.
    S. Fischer, B. Windshügel, D. Horak, K.C. Holmes, J.C. Smith, Proc. Natl. Am. Soc. 102, 6873 (2005)CrossRefGoogle Scholar
  59. 59.
    M. Bier, BioSystems 93, 23 (2008)CrossRefGoogle Scholar
  60. 60.
    K.W. Müller, A.M. Birzle, W.A. Wall, Proc. R. Soc. A 472, 20150555 (2016)CrossRefGoogle Scholar
  61. 61.
    S. Kubo, W. Li, S. Takada, PLOS Comput. Bio.  https://doi.org/10.1371/journal.pcbi.1005748 (2017)
  62. 62.
    J.R. Moffitt, Y.R. Chemla, K. Aathavan, S. Grimes, P.J. Jardine, D.L. Anderson, C. Bustamante, Nature 457, 446 (2009)CrossRefGoogle Scholar
  63. 63.
    R.D. Astumian, S. Mukherjee, A. Warshel, ChemPhysChem 17, 1719 (2016)CrossRefGoogle Scholar
  64. 64.
    S. Koppole, J.C. Smith, S. Fischer, Structure 15, 825 (2007)CrossRefGoogle Scholar
  65. 65.
    K. Shiroguchi, H.F. Chin, D.E. Hannemann, E. Muneyuki, E.M. De La Cruz, K. Kinosita Jr., PLoS Biol. 9, e1001031 (2011)CrossRefGoogle Scholar
  66. 66.
    A. Baumketner, Proteins 80, 2701 (2012)CrossRefGoogle Scholar
  67. 67.
    R. Yasuda, H. Noji, M. Yoshida, K. Kinosita Jr., H. Itoh, Nature 410, 898 (2001)CrossRefGoogle Scholar
  68. 68.
    K. Shimabukuro, R. Yasuda, E. Muneyuki, K.Y. Hara, K. Kinosita Jr., M. Yoshida, Proc. Natl. Am. Soc. 100(25), 14731 (2003)CrossRefGoogle Scholar
  69. 69.
    J. Pu, M. Karplus, Proc. Natl. Am. Soc. 105(4), 1192 (2008)CrossRefGoogle Scholar
  70. 70.
    S. Volkán-Kacsó, R.A. Marcus, Proc. Natl. Acad. Sci. USA 113(43), 12029 (2016)CrossRefGoogle Scholar
  71. 71.
    K. Nam, J. Pu, M. Karplus, Proc. Natl. Am. Soc. 111(50), 17851 (2014)CrossRefGoogle Scholar
  72. 72.
    R. Perez-Carrasco, J.M. Sancho, Europhys. Lett. 91(6), 60001 (2010)CrossRefGoogle Scholar
  73. 73.
    V. Serreli, C.F. Lee, E.R. Kay, D.A. Leigh, Nature 445(445), 523 (2007)CrossRefGoogle Scholar
  74. 74.
    M. Klok, M. Walko, E.M. Geertsema, N. Ruangsupapichat, J.C. Kistemaker, A. Meetsma, B.L. Feringa, Chem. Eur. J. 14, 11183 (2008)CrossRefGoogle Scholar
  75. 75.
    J.M. Lehn, Chem. Eur. J. 12, 5910 (2006)CrossRefGoogle Scholar
  76. 76.
    H. Itoh, A. Takahashi, K. Adachi, H. Noji, R. Yasuda, M. Yoshida, K. Kinosita Jr., Nature 427, 465 (2004)CrossRefGoogle Scholar
  77. 77.
    R. Watanabe, D. Okuno, S. Sakakihara, K. Shimabukuro, R. Iino, M. Yoshida, H. Noji, Nat. Chem. Biol. 8, 86 (2012)CrossRefGoogle Scholar
  78. 78.
    R. Elber, A. West, Proc. Natl. Acad. Sci. 107, 5001 (2010)CrossRefGoogle Scholar
  79. 79.
    R.V. Agafonov, I.V. Negrashov, Y.V. Tkachev, S.E. Blakely, M.A. Titus, D.D. Thomas, Y.E. Nesmelov, Proc. Natl. Am. Soc. 106, 21625 (2009)CrossRefGoogle Scholar
  80. 80.
    H. Yu, L. Ma, Y. Yang, Q. Cui, PLoS Comput. Biol. 3, e23 (2007)CrossRefGoogle Scholar
  81. 81.
    B.T. Sutcliffe, The mathematics of vibration-rotation calculations, chap. 2, in Methods in Computational Chemistry, ed. by S. Wilson (Plenum Press, New York and London, 1992), pp. 33–89Google Scholar
  82. 82.
    E.H. Ahmed, P. Qi, B. Beser, J. Bai, R.W. Field, J.P. Huennekens, A.M. Lyyra, Phys. Rev. A 77, 053414 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität LeipzigLeipzigGermany

Personalised recommendations