Skip to main content
Log in

The Graovac–Pisanski index of armchair tubulenes

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Molecular descriptors play a fundamental role in chemistry and pharmaceutical sciences since they can be correlated with a large number of physico-chemical properties of molecules. The most commonly used molecular descriptor is the Wiener index which is defined as the sum of distances between all the pairs of vertices in a molecular graph. The Graovac–Pisanski index, which is also called the modified Wiener index, considers the symmetries and the distances in molecular graphs. This index already has known correlations with the topological efficiency and the melting points for some molecules and nanostrucures. Carbon nanotubes are molecules made of carbon with a cylindrical structure possessing unusual valuable properties. Because of these properties carbon nanotubes are extremely valuable for nanotechnology and materials engineering. We focus on open-ended single-walled carbon nanotubes, which are also called tubulenes. In a mathematical model we can consider them as a subgraph of a hexagonal lattice embedded on a cylinder with some vertices being identified. In the present paper, we investigate the automorphisms and the orbits of armchair tubulenes and derive the closed formulas for their Graovac–Pisanski index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.R. Ashrafi, M.V. Diudea (eds.), Distance, Symmetry, and Topology in Carbon Nanomaterials (Springer International Publishing, Switzerland, 2016)

    Google Scholar 

  2. A.R. Ashrafi, F. Koorepazan-Moftakhar, M.V. Diudea, Topological symmetry of nanostructures. Fuller. Nanotub. Car. N. 23, 989–1000 (2015)

    Article  CAS  Google Scholar 

  3. A.R. Ashrafi, F. Koorepazan-Moftakhar, M.V. Diudea, O. Ori, Graovac–Pisanski index of fullerenes and fullerene-like molecules. Fuller. Nanotub. Car. N. 24, 779–785 (2016)

    Article  CAS  Google Scholar 

  4. A.R. Ashrafi, H. Shabani, The modified Wiener index of some graph operations. Ars. Math. Contemp. 11, 277–284 (2016)

    Google Scholar 

  5. F. Cataldo, O. Ori, S. Iglesias-Groth, Topological lattice descriptors of graphene sheets with fullerene-like nanostructures. Mol. Sim. 36, 341–353 (2010)

    Article  CAS  Google Scholar 

  6. M. Črepnjak, N. Tratnik, P. Žigert Pleteršek, Predicting melting points by the Graovac–Pisanski index. Fuller. Nanotub. Car. N. (in press)

  7. M. Ghorbani, S. Klavžar, Modified Wiener index via canonical metric representation, and some fullerene patches. Ars. Math. Contemp. 11, 247–254 (2016)

    Google Scholar 

  8. A. Graovac, T. Pisanski, On the Wiener index of a graph. J. Math. Chem. 8, 53–62 (1991)

    Article  Google Scholar 

  9. I. Gutman, D. Vukičević, J. Žerovnik, A class of modified Wiener indices. Croat. Chem. Acta 77, 103–109 (2004)

    CAS  Google Scholar 

  10. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  11. F. Koorepazan-Moftakhar, A.R. Ashrafi, Combination of distance and symmetry in some molecular graphs. Appl. Math. Comput. 281, 223–232 (2016)

    Article  Google Scholar 

  12. F. Koorepazan-Moftakhar, A.R. Ashrafi, Distance under symmetry. MATCH Commun. Math. Comput. Chem. 74, 259–272 (2015)

    Google Scholar 

  13. F. Koorepazan-Moftakhar, A.R. Ashrafi, Z. Mehranian, Symmetry and PI polynomials of \(C_{50+10n}\) fullerenes. MATCH Commun. Math. Comput. Chem. 71, 425–436 (2014)

    Google Scholar 

  14. M. Liu, B. Liu, A survey on recent results of variable Wiener index. MATCH Commun. Math. Comput. Chem. 69, 491–520 (2013)

    Google Scholar 

  15. S. Nikolić, N. Trinajstić, M. Randić, Wiener index revisited. Chem. Phys. Lett. 333, 319–321 (2001)

    Article  Google Scholar 

  16. O. Ori, F. Cataldo, A. Graovac, Topological ranking of \(C_{28}\) fullerenes reactivity. Fuller. Nanotub. Car. N. 17, 308–323 (2009)

    Article  CAS  Google Scholar 

  17. R. Pinal, Effect of molecular symmetry on melting temperature and solubility. Org. Biomol. Chem. 2, 2692–2699 (2004)

    Article  CAS  Google Scholar 

  18. H. Sachs, P. Hansen, M. Zheng, Kekulé count in tubular hydrocarbons. MATCH Commun. Math. Comput. Chem. 33, 169–241 (1996)

    CAS  Google Scholar 

  19. H. Shabani, A.R. Ashrafi, Symmetry-moderated Wiener index. MATCH Commun. Math. Comput. Chem. 76, 3–18 (2016)

    Google Scholar 

  20. N. Tratnik, The Graovac-Pisanski index of zig-zag tubulenes and the generalized cut method. J. Math. Chem. 55, 1622–1637 (2017)

    Article  CAS  Google Scholar 

  21. D.B. West, Introduction to Graph Theory (Prentice Hall, Upper Saddle River, New Jersey, 1996)

    Google Scholar 

  22. H. Wiener, Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author Petra Žigert Pleteršek acknowledge the financial support from the Slovenian Research Agency (research core Funding No. P1-0297). The author Niko Tratnik was financially supported by the Slovenian Research Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niko Tratnik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tratnik, N., Žigert Pleteršek, P. The Graovac–Pisanski index of armchair tubulenes. J Math Chem 56, 1103–1116 (2018). https://doi.org/10.1007/s10910-017-0846-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-017-0846-5

Keywords

Navigation