Skip to main content
Log in

Nested wreath groups and their applications to phylogeny in biology and Cayley trees in chemistry and physics

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Nested wreath product groups arise from looped or recursive structures that contain repeated copies of the same structure one within the other. Phylogeny trees in biology, Cayley trees, Bethe lattices, NMR graphs of non-rigid molecules, ammoniated ammonium ions are all examples of structures that exhibit such nested wreath product automorphism groups. We show that the conjugacy classes, irreducible representations and character tables of these nested group structures can be generated using multinomial generating functions cast in terms of matrix types that can be simplified into generalized cycle type polynomials. The nested wreath product groups rapidly increase in orders, for example, a simple wreath product group \(\hbox {S}_{7}[\hbox {S}_{7}]\) consists of \((7!)^{8}\) or \(4.1633\times 10^{23}\) operations, 481,890 conjugacy classes, spanning a 481,891 \(\times \) 481,891 character table that would occupy 232,217,972 pages. We have obtained powerful recursive relations for the conjugacy classes, character tables and the orders of various conjugacy cases of any nested wreath product \(\{[\hbox {S}_{\mathrm{n}}]\}^{\mathrm{m}}\) or \(\hbox {S}_{\mathrm{n}}[\hbox {S}_{\mathrm{n}}[\hbox {S}_{\mathrm{n}}{\ldots }.[\hbox {S}_{\mathrm{n}}]]{\ldots }.]\) with order \(\left( {n!}\right) ^{a_m},\,\hbox {a}_{\mathrm{m}}=(\hbox {n}^{\mathrm{m}}-1)/(\hbox {n}-1)\). We have obtained the character tables of phylogenetic trees of any order, character tables of Cayley trees of degrees 3 and 4 and for Cayley trees of larger degrees, we have derived exact analytical expressions for the conjugacy classes and IRs for up to \(\{[\hbox {S}_{7}]\}^{\mathrm{m}}\) with order \((7!)^{137257}\) for \(\hbox {m}=7\). Applications to colorings of phylogenic trees in biology are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P.H. Sellers, SIAM J. Appl. Math. 26, 787–793 (1974)

    Article  Google Scholar 

  2. P.H. Sellers, J. Comb. Theor. 16, 253–258 (1974)

    Article  Google Scholar 

  3. M. Fischer, S. Klaere, M.A. T. Nguyen, A. von Haeseler, Algorithms for Molecular Biology 7, 36 (2012). http://www.almob.org/content/7/1/36

  4. F.A. Matsen IV, S.C. Billey, A. Kas, M.Z. Konvalinka, arXiv:1507.04784 (2015)

  5. F.A. Matsen IV, Syst. Biol. 64, e26–e41, (2015). http://sysbio.oxfordjournals.org/content/64/1/e26

  6. A. Henderson, Electron. J. Comb. 13, #R87 (2006)

  7. E. Delucci, Algebr. Comb. 26, 477–494 (2007). doi:10.1007/s10801-007-0067-2

    Article  Google Scholar 

  8. S. Devadoss, J. Morava, arXiv:1209.5465 (2012)

  9. S. Devadoss, J. Morava, arXiv:1009.3224

  10. R. Wallace, Nat. Proc. 4. (2011). hdl:10101/npre.2011.6413.1: Posted 14 Sep 2011

  11. R. Wallace, Mol. Biol. Syst. 8, 374 (2012)

    CAS  Google Scholar 

  12. C. Wells, Am. Math. Mon. 83, 317–338 (1976)

    Article  Google Scholar 

  13. R.C. Orellana, M.E. Orrisonb, D.N. Rockmore, Adv. Appl. Math. 33, 531–547 (2004)

    Article  Google Scholar 

  14. M. Baake, B. Gemünden, R. Oedingen, J. Math. Phys. 24, 1021 (1983)

    Article  Google Scholar 

  15. T. Kaltenbrunner, M. Gockeler, A. Schafer, Eur. Phys. J. C55, 387–401 (2008)

    Article  Google Scholar 

  16. R. Foote, G. Mirchandani, D. Rockmore, J. Symb. Comput. 48, 102–132 (2004)

    Google Scholar 

  17. K. Balasubramanian, J. Chem. Phys. 73, 3321–3337 (1980)

    Article  CAS  Google Scholar 

  18. K. Balasubramanian, J. Math. Chem. 2, 69–82 (1988)

    Article  Google Scholar 

  19. K. Balasubramanian, Int. J. Quantum Chem. 21, 411–418 (1982)

    Article  CAS  Google Scholar 

  20. R.C. Read, Math. Mag. 60, 275 (1987)

    Article  Google Scholar 

  21. J.H. Redfield, Am. J. Math. 49, 433 (1927)

    Article  Google Scholar 

  22. N.G. de Bruijn, in Applied Combinatorial, Mathematics edn. (New York, E.F, Beckenbach Wiley, 1964)

  23. N.G. de Bruijn, J. Comb. Theory 2, 418 (1967)

    Article  Google Scholar 

  24. F. Harary, E.M. Palmer, Graphical Enumeration (Academic Press, New York, 1979)

    Google Scholar 

  25. D.E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups (Clarendon Press, Oxford, 1950)

    Google Scholar 

  26. W. Ledermann, Introduction to Group Characters, 2nd edn. (Cambridge University Press, Cambridge, 1987)

    Book  Google Scholar 

  27. I.G. MacDonald, Symmetric Functions and Hall Polynomials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  28. H.O. Foulkes, Can. J. Math. 18, 1060 (1966)

    Article  Google Scholar 

  29. S.G. Williamson, J. Comb. Theor. 11, 122 (1971)

    Article  Google Scholar 

  30. R. Merris, Lin. Alg. Appl. 29, 255 (1980)

    Article  Google Scholar 

  31. G. James, A. Kerber, The Representation Theory of the Symmetric Group (Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley, Reading, 1981), p. 510

  32. A. Kerber, Lecture Notes in Mathematics, vol. 495 (1975)

  33. V. Krishnamurthy, V. Combinatorics, Theory and Applications (Harwood, New York, 1985)

    Google Scholar 

  34. G. Pólya, R.C. Read, Combinatorial Enumeration of Groups, Graphs and Chemical Compounds (Springer, New York, 1987)

    Book  Google Scholar 

  35. H.C. Longuet-Higgins, Mol. Phys. 6, 445 (1963)

    Article  CAS  Google Scholar 

  36. K. Balasubramanian, J. Chem. Phys. 72, 665 (1980)

    Article  CAS  Google Scholar 

  37. K. Balasubramanian, J. Chem. Phys. 120, 5524 (2004)

    Article  CAS  Google Scholar 

  38. R.B. King, J. Math. Phys. 7, 51 (1991)

    CAS  Google Scholar 

  39. R.B. King, Dalton Trans. (2003) p. 395

  40. F.P. Temme, in: Frontiers in Quantum systems in Chemistry and Physics (ed. by S. Wilson et al. Springer, Berlin) 20, 491–505 (2008)

  41. R.B. King in Applications of Graph Theory and Topology in Inorganic Cluster and Coordination Chemistry (CRC Press Boca Raton, FL, 1993)

  42. R.B. King, Mol. Phys. 100, 1567 (2002)

    Article  CAS  Google Scholar 

  43. G.H. Wagniére, On Chirality and the Universal Asymmetry (Reflections on Image and Mirror Image. Wiley-VCH, Zürich, 2007)

  44. D.H. Rouvray, Chem. Soc. Rev. 3, 355 (1974)

    Article  CAS  Google Scholar 

  45. A.T. Balaban, Enumerating isomers, in Chemical Graph Theory ed. by D. Bonchev, D.H. Rouvray (Gordon Beach Publishers, 1991)

  46. A.T. Balaban, Rev. Roum. Chim. 15, 463 (1970)

    Google Scholar 

  47. R.A. Davidson, J. Am. Chem. Soc. 103, 212 (1981)

    Article  Google Scholar 

  48. K. Balasubramanian, Theor. Chim. Acta 51, 37 (1979)

    Article  CAS  Google Scholar 

  49. K. Balasubramanian, Theor. Chim. Acta 53, 129 (1979)

    Article  CAS  Google Scholar 

  50. K. Balasubramanian, Indian J. Chem. 16B, 1094 (1978)

    CAS  Google Scholar 

  51. K. Balasubramanian, J. Magn. Reson. 48, 165 (1982)

    CAS  Google Scholar 

  52. K. Balasubramanian, J. Magn. Reson. 91, 45 (1991)

    CAS  Google Scholar 

  53. K. Balasubramanian, Int. J. Quantum Chem. 20, 1255 (1981)

    Article  CAS  Google Scholar 

  54. K. Balasubramanian, J. Phys. Chem. 86, 4668 (1982)

    Article  CAS  Google Scholar 

  55. K. Balasubramanian, J. Chem. Phys. 78, 6358 (1983)

    Article  CAS  Google Scholar 

  56. K. Balasubramanian, J. Chem. Phys. 78, 6369 (1983)

    Article  CAS  Google Scholar 

  57. K. Balasubramanian, Group Theory of Non-rigid Molecules and its Applications. Elsevier Publishing Co. 23, 149–168 (1983)

  58. K. Balasubramanian, Theor. Chim. Acta 78, 31 (1990)

    Article  CAS  Google Scholar 

  59. K. Balasubramanian, J. Math. Chem. 14, 113 (1993)

    Article  Google Scholar 

  60. K. Balasubramanian, Chem. Rev. 85, 599 (1985)

    Article  CAS  Google Scholar 

  61. K. Balasubramanian, J. Chem. Phys. 95, 8273 (1991)

    Article  CAS  Google Scholar 

  62. K. Balasubramanian, T.R. Dyke, J. Phys. Chem. 88, 4688 (1984)

    Article  CAS  Google Scholar 

  63. K. Balasubramanian, J. Comput. Chem. 3, 69 (1982)

    Article  CAS  Google Scholar 

  64. K. Balasubramanian, J. Comput. Chem. 3, 75 (1982)

    Article  CAS  Google Scholar 

  65. X.Y. Liu, K. Balasubramanian, J. Comput. Chem. 11, 589–602 (1990)

    Article  CAS  Google Scholar 

  66. X.Y. Liu, K. Balasubramanian, J. Comput. Chem 10, 417–425 (1989)

    Article  CAS  Google Scholar 

  67. The-GAP-Group, GAP—Groups, Algorithms, and Programming, Version 4.4.9 (2006)

  68. K. Balasubramanian, J. Chem. Phys. 74, 6824 (1981)

    Article  CAS  Google Scholar 

  69. K. Balasubramanian, J. Chem. Phys. 75, 4572 (1981)

    Article  CAS  Google Scholar 

  70. K. Balasubramanian, K. J. Phys. Chem. 108, 5527 (2004)

    Article  CAS  Google Scholar 

  71. S. Fujita, Symmetry and Combinatorial Enumeration in Chemistry (Springer, Berlin, 1991)

    Book  Google Scholar 

  72. J.M. Price, M.W. Crofton, Y.T. Lee, J. Phys. Chem. 95, 2182–2195 (1991)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnan Balasubramanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balasubramanian, K. Nested wreath groups and their applications to phylogeny in biology and Cayley trees in chemistry and physics. J Math Chem 55, 195–222 (2017). https://doi.org/10.1007/s10910-016-0680-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-016-0680-1

Keywords

Navigation