Skip to main content
Log in

Analysis of the swelling or shrinking kinetics of crosslinked hydrophilic polymers by mathematical modeling

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The developed kinetic physical and mathematical model of a crosslinked hydrophilic polymer swelling process in aqueous solutions of low molecular weight compounds is presented. The model was tested on 13 combinations of “polymer-solution”. The experimental results of measuring the swelling kinetics can be described by considering the flows caused by the difference in chemical potential of the water and solute inside/outside the swollen polymer, as well as the effect of elastic forces in the polymer. The calculation results are in a good agreement with experimental data.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\(a_w \) :

Water activity in the solution under study (dimensionless)

\(c_0 \) :

The solute concentration in the external solution (mol/l)

\(c_b \) :

The solute concentration in the surface layer (average) (mol/l)

\(c^{*}\) :

The solute concentration on the border of polymer gel (PG) (mol/l)

\(\bar{{c}}\) :

The solute concentration in the external solution phase (ES) of the PG (mol/l)

D :

The solute diffusion coefficient in the external solution (m\(^{2}\)/s)

\(E_v \) :

The specific amount of polar groups in the dry polymer (g-eq/l)

h :

The thickness of surface layer (m)

\(n_w \) :

The specific water of polymer sorption (mol H\(_{2}\)O/mol pol. gr.)

Q :

The amount of solute in the PG (mol)

p :

Parameters characterizing influence of the nature and concentration of solute on the number of hydrogen bonds in the polymer gel [(mol/l)\(^{-1}\)]

\(S, S_{\max } \) :

Current and maximum visible surface area of the PG (m\(^{2}\))

t :

Time (s)

\(V,V_{\max } \) :

Current and maximum volume of the PG (m\(^{3}\))

\(V_0 \) :

Volume of the PG immersed in water (m\(^{3}\))

\(V_r ,V_s ,V_f \) :

The volume of dry polymer, the volume of adsorbed water and the volume of the external phase solution (or “free” water), respectively (m\(^{3}\))

\(V_f^{eq}\) :

The volume of the ES phase which is in equilibrium with concentration of the electrolyte in the external solution (m\(^{3}\))

References

  1. N.N. Mushkambarov, Physical and Colloid Chemistry (GEOTAR-MED, Moscow, 2001), p. 364. (in Russian)

    Google Scholar 

  2. N.B. Ferapontov, F.F. Rubin, S.S. Kovaleva, Reagentless method of determining the composition of the solution and concentrations of solute components and device for its determining. Patent Rus. Fed. 1228250 on 29.04.2005, bulletin of inventions 124 on 27.08.2006

  3. P. Schroeder, Z. Phys. Chem. 45, 75–117 (1903)

    Google Scholar 

  4. N.B. Ferapontov, V.I. Gorshkov, L.R. Parbuzina, H.T. Trobov, N.L. Strusovskaya, React. Funct. Polym. 41, 213–225 (1999)

    Article  CAS  Google Scholar 

  5. N.B. Ferapontov, L.R. Parbuzina, V.I. Gorshkov, N.L. Strusovskaya, A.N. Gagarin, React. Funct. Polym. 45, 145–153 (2000)

    Article  CAS  Google Scholar 

  6. H. Schott, J. Pharm. Sci. 81(5), 467–470 (1992)

    Article  CAS  Google Scholar 

  7. T. Budtova, P. Navard, Macromolecules 31, 8845–8850 (1998)

    Article  CAS  Google Scholar 

  8. Y. Zhao, W. Chen, Y. Yang, X. Yang, H. Xu, Colloid Polym. Sci. 285, 1395–1400 (2007)

    Article  CAS  Google Scholar 

  9. H. Schott, J. Macromol. Sci. Part B Phys. 31(1), 1–9 (1992)

    Article  CAS  Google Scholar 

  10. N.A. Tikhonov, Russ. J. Phys. Chem. A 81(8), 1292–1297 (2007)

    Article  CAS  Google Scholar 

  11. T. Tanaka, J. Chem. Phys. 70, 1214 (1979)

    Article  CAS  Google Scholar 

  12. T. Tanaka, Y. Li, J. Chem. Phys. 90, 1365–1371 (1990)

    Google Scholar 

  13. H. Schott, J. Pharm. Sci. 5(81), 467–470 (1990)

    Google Scholar 

  14. L. Brannon-Peppas, N.A. Peppas, Int. J. Pharm. 70, 53–57 (1991)

    Article  CAS  Google Scholar 

  15. M. Zrinyi, J. Rosta, Macromolecules 26(12), 3097–3102 (1993)

    Article  CAS  Google Scholar 

  16. C. Wang, Y. Li, Z. Hu, Macromolecules 30(16), 4727–4732 (1997)

    Article  CAS  Google Scholar 

  17. S. Li, R. Vatanparast, H. Lemmetyinen, Polymer 41(15), 5571–5576 (2000)

    Article  CAS  Google Scholar 

  18. H.S. Nandi, H. Winter, Macromolecules 38(10), 4447–4455 (2005)

    Article  CAS  Google Scholar 

  19. W.G. Scherer, J. Non-Cryst. Solids 113(2), 107–118 (1989)

    Article  CAS  Google Scholar 

  20. W.G. Scherer, J. Non-Cryst. Solids 145, 33–40 (1992)

    Article  CAS  Google Scholar 

  21. N. Bouklasa, R. Huang, Soft Matter 8, 8194–8203 (2012)

    Article  Google Scholar 

  22. C.Y. Hui, V. Muralidharan, J. Chem. Phys. 123, 154905 (2005)

    Article  Google Scholar 

  23. A.R. Khohlov, E.E. Dormidontova, Phys. Uspekhi 40(2), 109–124 (1997)

    Article  Google Scholar 

  24. T. Tanaka, Phys. Rev. Lett. 40(12), 820–823 (1978)

    Article  CAS  Google Scholar 

  25. M. Shibayama, T. Tanaka, C.C. Han, J. Chem. Phys. 97, 6842 (1992)

    Article  CAS  Google Scholar 

  26. I. Ohmine, T. Tanaka, J. Chem. Phys. 77(11), 5725–5729 (1982)

    Article  CAS  Google Scholar 

  27. V.Y. Boryu, I.Y. Erukhimovich, Macromolecules 21(11), 3240–3249 (1988)

    Article  CAS  Google Scholar 

  28. K. Pitzer, G. Mayorga, J. Phys. Chem. 77(19), 2300–2308 (1973)

    Article  CAS  Google Scholar 

  29. A.N. Gruzdeva, V.I. Gorshkov, A.N. Gagarin, N.B. Ferapontov, Russ. J. Phys. Chem. 79(7), 1150–1152 (2005)

    CAS  Google Scholar 

  30. S.S. Kovaleva, N.B. Ferapontov, Sorpt. Chromatogr. Process. 7(6), 883–894 (2007). (in Russian)

    Google Scholar 

  31. N.B. Ferapontov, M.G. Tokmachev, A.N. Gagarin, N.L. Strusovskaya, S.N. Khudyakova, React. Funct. Polym. 73, 1137–1143 (2013)

    Article  CAS  Google Scholar 

  32. I.A. Yamskov, M.V. Budanov, V.A. Davankov, Bioorg. Khim. 5, 1728 (1979)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail G. Tokmachev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokmachev, M.G., Ferapontov, N.B. & Gagarin, A.N. Analysis of the swelling or shrinking kinetics of crosslinked hydrophilic polymers by mathematical modeling. J Math Chem 55, 142–152 (2017). https://doi.org/10.1007/s10910-016-0676-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-016-0676-x

Keywords

Navigation