Skip to main content
Log in

Development of molecular fragment interaction method for designing organic ferromagnets

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The design and preparation of organic ferromagnets are important and challenging from both experimental and theoretical viewpoints. We propose a molecular fragment interaction method for predicting the high-spin stability of conjugated hydrocarbon radicals without quantum chemistry calculations, which comprise three steps: (1) division of the system into fragments and numbering of the carbon atoms, (2) construction of a secular equation, and (3) solving of the secular equation. If there are two or more nonbonding molecular orbitals (NBMOs) and the smallest number of bonds between two carbon atoms with unpaired electrons is an even number, then the conjugated hydrocarbon radical has a high-spin ground state. This method can also be used to compare the high-spin stability between different conjugated hydrocarbon radicals. If a conjugated hydrocarbon radical has a high-spin ground state, then its derivative has a high-spin ground state as long as the degeneracy of the NBMOs is kept. This method is useful for the rapid design of organic ferromagnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Neuhaus, D. Grote, W. Sander, J. Am. Chem. Soc. 130, 2993 (2008)

    Article  CAS  Google Scholar 

  2. G. Trinquier, N. Suaud, J.P. Malrieu, Chem. Eur. J. 16, 8762 (2010)

    Article  CAS  Google Scholar 

  3. P. Neuhaus, W. Sander, Angew. Chem. Int. Ed. 49, 7277 (2010)

    Article  CAS  Google Scholar 

  4. T. Michinobu, J. Inui, H. Nishide, Polym. J. 42, 575 (2010)

    Article  CAS  Google Scholar 

  5. X.W. Li, Q. Wang, P. Jena, J. Phys. Chem. C 115, 19621 (2011)

    Article  CAS  Google Scholar 

  6. M. Hatanaka, J. Phys. Chem. C 116, 20109 (2012)

    Article  CAS  Google Scholar 

  7. M.F. Ottaviani, A. Modelli, O. Zeika, S. Jockusch, A. Moscatelli, N.J. Turro, J. Phys. Chem. A 116, 174 (2012)

    Article  CAS  Google Scholar 

  8. S. Shil, S. Paul, A. Misra, J. Phys. Chem. C 117, 2016 (2013)

    Article  CAS  Google Scholar 

  9. X. Zhu, Y. Aoki, J. Comput. Chem. 36, 1232 (2015)

    Article  CAS  Google Scholar 

  10. X. Zhu, Y. Aoki, Chem. Phys. Lett. 637, 143 (2015)

    Article  CAS  Google Scholar 

  11. M. Kinoshita, Jpn. J. Appl. Phys. 33, 5718 (1994)

    Article  CAS  Google Scholar 

  12. C.P. Constantinides, P.A. Koutentis, H. Krassos, J.M. Rawson, A.J. Tasiopoulos, J. Org. Chem. 76, 2798 (2011)

    Article  CAS  Google Scholar 

  13. K. Awaga, H. Okamoto, T. Mitani, Y. Maruyama, T. Sugano, M. Kinoshita, Sol. State Commun. 71, 1173 (1989)

    Article  CAS  Google Scholar 

  14. K. Awaga, T. Sugano, M. Kinoshita, T. Matsuo, H. Suga, J. Chem. Phys. 87, 3062 (1987)

    Article  CAS  Google Scholar 

  15. T. Nogami, K. Togashi, H. Tsuboi, T. Ishida, H. Yoshikawa, M. Yasui, F. Iwasaki, H. Iwamura, N. Takeda, M. Ishikawa, Synth. Met. 71, 1813 (1995)

    Article  CAS  Google Scholar 

  16. M. Tamura, Y. Nakazawa, D. Shiomi, K. Nozawa, Y. Hosokoshi, M. Ishikawa, M. Takahashi, M. Kinoshita, Chem. Phys. Lett. 186, 401 (1991)

    Article  CAS  Google Scholar 

  17. R. Chiarelli, M.A. Novak, A. Rassat, J.L. Tholence, Nature 363, 147 (1993)

    Article  CAS  Google Scholar 

  18. S.H. Li, J. Ma, Y.S. Jiang, J. Phys. Chem. 100, 4775 (1996)

    Article  CAS  Google Scholar 

  19. A. Rajca, J. Wongsriratanakul, S. Rajca, J. Am. Chem. Soc. 119, 11674 (1997)

    Article  CAS  Google Scholar 

  20. S.H. Li, J. Ma, Y.S. Jiang, J. Phys. Chem. A 101, 5567 (1997)

    Article  CAS  Google Scholar 

  21. H. Murata, M. Takahashi, K. Namba, N. Takahashi, H. Nishide, J. Org. Chem. 69, 631 (2004)

    Article  CAS  Google Scholar 

  22. H.B. Ma, C.G. Liu, C.J. Zhang, Y.S. Jiang, J. Phys. Chem. A 111, 9471 (2007)

    Article  CAS  Google Scholar 

  23. A. Rajca, K. Shiraishi, S. Rajca, Chem. Commun. 4372–4374 (2009)

  24. P. Bujak, I. Kulszewicz-Bajer, M. Zagorska, V. Maurel, I. Wielgus, A. Pron, Chem. Soc. Rev. 42, 8895 (2013)

    Article  CAS  Google Scholar 

  25. C. Calzado, C. Angeli, C. Graaf, R. Caballol, Theor. Chem. Acc. 128, 505 (2011)

    Article  CAS  Google Scholar 

  26. V. Barone, C. Boilleau, I. Cacelli, A. Ferretti, S. Monti, G. Prampolini, J. Chem. Theory Comput. 9, 300 (2013)

    Article  CAS  Google Scholar 

  27. H.C. Longuet-Higgins, J. Chem. Phys. 18, 265 (1950)

    Article  CAS  Google Scholar 

  28. A.A. Ovchinnikov, Theor. Chim. Acta 47, 297 (1978)

    Article  CAS  Google Scholar 

  29. Y. Aoki, A. Imamura, Int. J. Quantum Chem. 74, 491 (1999)

    Article  CAS  Google Scholar 

  30. Y. Orimoto, Y. Aoki, J. Chem. Theory Comput. 2, 786 (2006)

    Article  CAS  Google Scholar 

  31. S. Onitsuka, Y. Aoki, Theor. Chem. Acc. 130, 789 (2011)

    Article  CAS  Google Scholar 

  32. X. Zhu, Y. Aoki, Curr. Phys. Chem. 3, 99 (2013)

    Article  CAS  Google Scholar 

  33. P.G. Mezey, Mol. Phys. 96, 169 (1999)

    Article  CAS  Google Scholar 

  34. P.G. Mezey, J. Math. Chem. 30, 299 (2001)

    Article  CAS  Google Scholar 

  35. P.G. Mezey, Acc. Chem. Res. 47, 2821 (2014)

    Article  CAS  Google Scholar 

  36. Y. Orimoto, T. Imai, K. Naka, Y. Aoki, J. Phys. Chem. A 110, 5803 (2006)

    Article  CAS  Google Scholar 

  37. P. Dowd, Acc. Chem. Res. 5, 242 (1972)

    Article  CAS  Google Scholar 

  38. L.V. Slipchenko, A.I. Krylov, J. Chem. Phys. 118, 6874 (2003)

    Article  CAS  Google Scholar 

  39. P. Nachtigall, P. Dowd, K.D. Jordan, J. Am. Chem. Soc. 114, 4747 (1992)

    Article  CAS  Google Scholar 

  40. P.G. Wenthold, J.B. Kim, W.C. Lineberger, J. Am. Chem. Soc. 119, 1354 (1997)

    Article  CAS  Google Scholar 

  41. H.M.T. Nguyen, A. Dutta, K. Morokuma, M.T. Nguyen, J. Chem. Phys. 122, 154308 (2005)

    Article  Google Scholar 

  42. D. Doehnert, J. Koutecky, J. Am. Chem. Soc. 102, 1789 (1980)

    Article  CAS  Google Scholar 

  43. S. Chattopadhyay, R.K. Chaudhuri, U. Sinha Mahapatra, Chem. Phys. Chem. 12, 2791 (2011)

    CAS  Google Scholar 

  44. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A.J. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J. V. Ortiz, J. Cioslowski, D.J. Fox. Gaussian 09, Revision C.01. Gaussian, Inc., Wallingford, CT (2010)

  45. K. Yoshizawa, K. Tanaka, T. Yamabe, J. Phys. Chem. 98, 1851 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant-in-aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), Grant-in-Aid for Scientific Research(A) No. 23245005 and by the Group CREST, Japan Science and Technology Agency (JST). The calculations were performed on the Linux cluster in our laboratory at Kyushu University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriko Aoki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Aoki, Y. Development of molecular fragment interaction method for designing organic ferromagnets. J Math Chem 54, 1585–1595 (2016). https://doi.org/10.1007/s10910-016-0638-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-016-0638-3

Keywords

Navigation