Skip to main content
Log in

Unitary transformations of a family of two-dimensional anharmonic oscillators

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper we analyze a recent application of perturbation theory by the moment method to a family of two-dimensional anharmonic oscillators. By means of straightforward unitary transformations we show that two of the models studied by the authors are separable. Other is unbounded from below and therefore cannot be successfully treated by perturbation theory unless a complex harmonic frequency is introduced in the renormalization process. We calculate the lowest resonance by means of complex-coordinate rotation and compare its real part with the eigenvalue estimated by the authors. A pair of the remaining oscillators are equivalent as they can be transformed into one another by unitary transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.R.M. Witwit, J. Killingbeck, J. Phys. A 26, 3659 (1993)

    Article  Google Scholar 

  2. F.M. Fernández, E.A. Castro, Int. J. Quantum Chem. 26, 497 (1984)

    Article  Google Scholar 

  3. G.A. Arteca, F.M. Fernández, A.M. Mesón, E.A. Castro, Physica A 128, 253 (1984)

    Article  Google Scholar 

  4. F.M. Fernández, E.A. Castro, Int. J. Quantum Chem. 28, 603 (1985)

    Article  Google Scholar 

  5. R.A. Pullen, A.R. Edmonds, J. Phys. A 14, L477 (1981)

    Article  Google Scholar 

  6. R.A. Pullen, A.R. Edmonds, J. Phys. A 14, L319 (1981)

    Article  Google Scholar 

  7. F.M. Fernández, J. Garcia, Ann. Phys. 342, 195 (2014). arXiv:1309.0808 [quant-ph]

    Article  Google Scholar 

  8. F.M. Fernández, J. Garcia, Cent. Eur. J. Phys. 12, 499 (2014). arXiv:1310.5229v1 [quant-ph]

    Google Scholar 

  9. F.M. Fernández, J. Garcia, J. Math. Phys. 55, 042107 (2014). arXiv:1308.6179v2 [quant-ph]

    Article  Google Scholar 

  10. P. Amore, F.M. Fernández, J. Garcia, Ann. Phys. 350, 533 (2014). arXiv:1405.5234 [quant-ph]

    Article  CAS  Google Scholar 

  11. P. Amore, F.M. Fernández, J. Garcia, Ann. Phys. 353, 238 (2015). arXiv:1409.2672 [quant-ph]

    Article  CAS  Google Scholar 

  12. F.M. Fernández, J. Math. Chem. 53, 998 (2015). arXiv:1409.4120 [quant-ph]

    Article  Google Scholar 

  13. M. Tinkham, Group Theory and Quantum Mechanics (McGraw-Hill Book Company, New York, 1964)

    Google Scholar 

  14. F.A. Cotton, Chemical Applications of Group Theory (Wiley, New York, 1990)

    Google Scholar 

  15. F.M. Fernández, Q. Ma, R.H. Tipping, Phys. Rev. A 40, 6149 (1989)

    Article  Google Scholar 

  16. F.M. Fernández, Q. Ma, D.J. DeSmet, R.H. Tipping, Can. J. Phys. 67, 931 (1989)

    Article  Google Scholar 

  17. P. Amore, F.M. Fernandez, Phys. Scr. 81, 045011 (2010)

    Article  Google Scholar 

  18. J. Killingbeck, M.N. Jones, J. Phys. A 19, 705 (1986)

    Article  Google Scholar 

  19. N.R.M. Witwit, J. Phys. A 24, 4535 (1991)

    Article  Google Scholar 

  20. E. Balslev, J.C. Combes, Commun. Math. Phys. 22, 280 (1971)

    Article  Google Scholar 

  21. W.P. Reinhardt, Int. J. Quantum Chem. Symp. 10, 359 (1976)

    Article  CAS  Google Scholar 

  22. S.-I. Chu, W.P. Reinhardt, Phys. Rev. Lett. 39, 1195 (1977)

    Article  CAS  Google Scholar 

  23. R. Yaris, J. Bendler, R.A. Lovett, C.A. Bender, P.A. Fedders, Phys. Rev. A 18, 1816 (1978)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco M. Fernández.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, F.M., Garcia, J. Unitary transformations of a family of two-dimensional anharmonic oscillators. J Math Chem 54, 1321–1326 (2016). https://doi.org/10.1007/s10910-016-0624-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-016-0624-9

Keywords

Navigation