Skip to main content
Log in

Exponentially fitted TDRK pairs for the Schrödinger equation

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Two exponentially fitted two-derivative Runge–Kutta pairs for the numerical integration of the Schrödinger equation are presented in this paper. The asymptotic expressions of the local errors for large energies are given. The numerical results in the integration of the radial Schrödinger equation with the Woods–Saxon potential and the Lennard-Jones potential show the high efficiency of our new methods when compared with some famous optimized codes in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Vigo-Aguiar, T.E. Simos, Family of twelve steps exponentially fitting symmetric multistep methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 32(3), 257–270 (2002)

    Article  CAS  Google Scholar 

  2. J. Vigo-Aguiar, T.E. Simos, Review of multistep methods for the numerical solution of the radial Schrödinger equation. Int. J. Quantum Chem. 103(3), 278–290 (2005)

    Article  CAS  Google Scholar 

  3. T.E. Simos, J. Vigo Aguiar, A modified Runge–Kutta method with phase-lag of order infinity for the numerical solution of the Schrödinger equation and related problems. Comput. Chem. 25(3), 275–281 (2001)

    Article  CAS  Google Scholar 

  4. T.E. Simos, An embedded Runge–Kutta method with phase-lag of order infinity for the numerical solution of the Schrödinger equation. Int. J. Mod. Phys. C 11(6), 1115–1133 (2000)

    Article  Google Scholar 

  5. J.M. Blatt, Practical points concerning the solution of the Schrödinger equation. J. Comput. Phys. 1, 378–391 (1967)

    Article  Google Scholar 

  6. Z.A. Anastassi, D.S. Vlachos, T.E. Simos, A family of Runge–Kutta methods with zero phase-lag and derivatives for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 46(4), 1158–1171 (2009)

    Article  CAS  Google Scholar 

  7. G. Avdelas, T.E. Simos, J. Vigo-Aguiar, An embedded exponentially-fitted Runge–Kutta method for the numerical solution of the Schrödinger equation and related periodic initial-value problems. Comput. Phys. Commun. 131(1–2), 52–67 (2000)

    Article  CAS  Google Scholar 

  8. T.E. Simos, J. Vigo-Aguiar, Exponentially fitted symplectic integrator. Phys. Rev. E. 67(1), 016701 (2003)

    Article  CAS  Google Scholar 

  9. J. Vigo-Aguiar, S. Natesan, A parallel boundary value technique for singularly perturbed two-point boundary value problems. J. Supercomput. 27(2), 195–206 (2004)

    Article  Google Scholar 

  10. J. Vigo-Aguiar, H. Ramos, Dissipative Chebyshev exponential-fitted methods for numerical solution of second-order differential equations. J. Comput. Appl. Math. 158(1), 187–211 (2003)

    Article  Google Scholar 

  11. T.E. Simos, J. Vigo-Aguiar, On the construction of efficient methods for second order IVPS with oscillating solution. Int. J. Mod. Phys. C 12(10), 1453–1476 (2001)

    Article  Google Scholar 

  12. J. Vigo-Aguiar, J. Martin-Vaquero, R. Criado, On the stability of exponential fitting BDF algorithms. J. Comput. Appl. Math. 175(1), 183–194 (2005)

    Article  Google Scholar 

  13. J. Vigo-Aguiar, T.E. Simos, J.M. Ferrandiz, Controlling the error growth in long-term numerical integration of perturbed oscillations in one or several frequencies. Proc. R. Soc. Lond. Seri. A Math. Phys. Eng. Sci. 460(2042), 561–567 (2004)

    Article  Google Scholar 

  14. J. Vigo-Aguiar, J.C. Reboredo, H. Ramos, Topics of contemporary computational mathematics. Int. J. Comput. Math. 89(8), 265–267 (2012)

    Article  Google Scholar 

  15. J. Vigo-Aguiar, J.A. López-Ramos, Applications of computational mathematics in science and engineering. Int. J. Comput. Math. 88(9), 1805–1807 (2011)

    Article  Google Scholar 

  16. J. Vigo-Aguiar, G.V. Berghe, Advances in computational and mathematical methods in science and engineering. J. Comput. Appl. Math. 235(7), 17–45 (2011)

    Google Scholar 

  17. J. Vigo-Aguiar, H. Ramos, A numerical ODE solver that preserves the fixed points and their stability. J. Comput. Appl. Math. 235(7), 1856–1867 (2011)

    Article  Google Scholar 

  18. J. Ranilla, E.S. Quintana-Ori, J. Vigo-Aguiar, High performance computing tools in science and engineering. J. Supercomput. 58(2), 143–144 (2011)

    Article  Google Scholar 

  19. F.G. Alonso, J. Reyes, J.M. Ferrándiz, J. Vigo-Aguiar, Multistep numerical methods for the integration of oscillatory problems in several frequencies. Adv. Eng. Softw 40(8), 543–553 (2009)

    Article  Google Scholar 

  20. J.M. Vaquero, J. Vigo-Aguiar, Exponential fitted Gauss, Radau and Lobatto methods of low order. Numer. Algorithm 48(4), 327–346 (2008)

    Article  Google Scholar 

  21. J.A. Reyes, F.G. Alonso, J.M. Ferrándiz, J. Vigo-Aguiar, Numeric multistep variable methods for perturbed linear system integration. Appl. Math. Comput. 190(1), 63–79 (2007)

    Article  Google Scholar 

  22. J. Vigo-Aguiar, J.M. Vaquero, Exponential fitting BDF algorithms and their properties. Appl. Math. Comput. 190(1), 80–110 (2007)

    Article  Google Scholar 

  23. J.M. Vaquero, J. Vigo-Aguiar, Adapted BDF algorithms: higher-order methods and their stability. J. Sci. Comput. 32(2), 287–313 (2007)

    Article  Google Scholar 

  24. G. Avdelas, A. Konguetsof, T.E. Simos, A generator and an optimized generator of highorder hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 2: Development of the generator, optimized generator and numerical results. J. Math. Chem. 29(4), 305–393 (2001)

    Google Scholar 

  25. G. Avdelas, E. Kefalidis, T.E. Simos, New P-stable eighth algebraic order exponentiallyfitted methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 31(4), 371–404 (2002)

    Article  CAS  Google Scholar 

  26. Z. Kalogiratou, T.E. Simos, Construction of trigonometrically and exponentially fitted Runge–Kutta–Nyström methods for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 31(2), 211–232 (2002)

    Article  CAS  Google Scholar 

  27. A. Konguetsof, A new two-step hybrid method for the numerical solution of the Schrödinger equation. J. Math. Chem. 47(2), 871–890 (2010)

    Article  CAS  Google Scholar 

  28. Th Monovasilis, Z. Kalogiratou, Th Monovasilis, T.E. Simos, Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 40(3), 257–267 (2006)

    Article  CAS  Google Scholar 

  29. G. Psihoyios, T.E. Simos, Sixth algebraic order trigonometrically fitted predictor-corrector methods for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 37(3), 295–316 (2005)

    Article  CAS  Google Scholar 

  30. D.P. Sakas, T.E. Simos, A family of multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 317–331 (2005)

    Article  CAS  Google Scholar 

  31. T.E. Simos, Stabilization of a four-step exponentially fitted method and its application to the Schrödinger equation. Int. J. Mod. Phys. C 18(3), 315–328 (2007)

    Article  Google Scholar 

  32. T. Monovasilis, T.E. Simos, Symplectic methods for the numerical integration of the Schrödinger equation. Comput. Mater. Sci. 38(3), 526–532 (2007)

    Article  CAS  Google Scholar 

  33. K. Tselios, T.E. Simos, Symplectic methods for the numerical solution of the radial Shrödinger equation. J. Math. Chem. 34(1–2), 83–94 (2003)

    Article  CAS  Google Scholar 

  34. H. Van de Vyver, An embedded phase-fitted modified Runge–Kutta method for the numerical integration of the radial Schrödinger equation. Phys. Lett. A 352, 278–285 (2006)

    Article  Google Scholar 

  35. H. Van de Vyver, Comparison of some special optimized fourth-order Runge–Kutta methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 166(2), 109–122 (2005)

    Article  Google Scholar 

  36. H. Van de Vyver, Modified explicit Runge–Kutta methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 171(2), 1025–1036 (2005)

    Google Scholar 

  37. H. Van de Vyver, An embedded 5(4) pair of modified explicit Runge–Kutta methods for the numerical solution of the Schrödinger equation. Int. J. Mod. Phys. C 16(6), 879–894 (2005)

    Article  Google Scholar 

  38. S.W. Liu, J. Zheng, Y.L. Fang, A new modified embedded 5(4) pair of explicit Runge–Kutta methods for the numerical solution of the Schr\(\ddot{d}\)inger equation. J. Math. Chem. 51(3), 937–953 (2013)

    Article  CAS  Google Scholar 

  39. LGr Ixaru, M. Rizea, A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19(1), 23–27 (1980)

    Article  Google Scholar 

  40. T.E. Simos, An exponentially-fitted Runge–Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions. Comput. Phys. Commun. 115(1), 1–8 (1998)

    Article  CAS  Google Scholar 

  41. Z.A. Anastassi, T.E. Simos, Trigonometrically fitted fifth-order Runge–Kutta methods for the numerical solution of the Schrödinger equation. Math. Comput. Model. 42, 877–886 (2005)

    Article  Google Scholar 

  42. Z. Anastassi, T.E. Simos, Trigonometrically fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 281–293 (2005)

    Article  CAS  Google Scholar 

  43. R.P.K. Chan, A.Y.J. Tasi, On explicit two-derivative Runge–Kutta methods. Numer. Algorithm 53(2–3), 171–194 (2010)

    Article  Google Scholar 

  44. L.G. Ixaru, G. Vanden Berghe (eds.), Exponential fitting (Kluwer Academic Publishers, Dordrecht, 2004)

    Google Scholar 

  45. A.D. Raptis, J.R. Cash, A variable step method for the numerical integration of the one-dimensional Schrödinger equation. Comput. Phys. Commun. 36(2), 113–119 (1985)

    Article  CAS  Google Scholar 

  46. D.F. Papadopoulos, T.E. Simos, The use of phase lag and amplification error derivatives for the construction of a modified Runge–Kutta–Nystrom method. Abstr. Appl. Anal. 2013, Article ID 910624, 11 (2013). doi:10.1155/2013/910624

  47. Z.A. Anastassi, T.E. Simos, A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems. J. Comput. Appl. Math. 236(16), 3880–3889 (2012)

    Article  Google Scholar 

  48. I. Alolyan, Z.A. Anastassi, T.E. Simos, A new family of symmetric linear four-step methods for the efficient integration of the Schrödinger equation and related oscillatory problems. Appl. Math. Comput. 218(9), 5370–5382 (2012)

    Article  Google Scholar 

  49. I. Alolyan, T.E. Simos, A family of high-order multistep methods with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 62(10), 3756–3774 (2011)

    Article  Google Scholar 

  50. Ch. Tsitouras, ITh Famelis, T.E. Simos, On modified Runge–Kutta trees and methods. Comput. Math. Appl. 62(4), 2101–2111 (2011)

    Article  Google Scholar 

  51. A.A. Kosti, Z.A. Anastassi, T.E. Simos, Construction of an optimized explicit Runge–Kutta–Nyström method for the numerical solution of oscillatory initial value problems. Comput. Math. Appl. 61(11), 3381–3390 (2011)

    Article  Google Scholar 

  52. Z. Kalogiratou, Th Monovasilis, T.E. Simos, New modified Runge–Kutta–Nystrom methods for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 60(6), 1639–1647 (2010)

    Article  Google Scholar 

  53. Th Monovasilis, Z. Kalogiratou, T.E. Simos, A family of trigonometrically fitted partitioned Runge–Kutta symplectic methods. Appl. Math. Comput. 209(1), 91–96 (2009)

    Article  Google Scholar 

  54. T.E. Simos, High order closed Newton–Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Appl. Math. Comput. 209(1), 137–151 (2009)

    Article  Google Scholar 

  55. Z.A. Anastassi, T.E. Simos, An optimized Runge–Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175(1), 1–9 (2005)

    Article  Google Scholar 

  56. G. Psihoyios, T.E. Simos, A fourth algebraic order trigonometrically fitted predictor–corrector scheme for IVPs with oscillating solutions. J. Comput. Appl. Math. 175(1), 137–147 (2005)

    Article  Google Scholar 

  57. D.P. Sakas, T.E. Simos, Multiderivative methods of eighth algrebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation. J. Comput. Appl. Math. 175(1), 161–172 (2005)

    Article  Google Scholar 

  58. K. Tselios, T.E. Simos, Runge–Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. J. Comput. Appl. Math. 175(1), 173–181 (2005)

    Article  Google Scholar 

  59. T.E. Simos, Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution. Appl. Math. Lett. 17(5), 601–607 (2004)

    Article  Google Scholar 

  60. Z. Kalogiratou, T.E. Simos, Newton–Cotes formulae for long-time integration. J. Comput. Appl. Math. 158(1), 75–82 (2003)

    Article  Google Scholar 

  61. Z. Kalogiratou, T. Monovasilis, T.E. Simos, Symplectic integrators for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 83–92 (2003)

    Article  Google Scholar 

  62. A. Konguetsof, T.E. Simos, A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 93–106 (2003)

    Article  Google Scholar 

  63. G. Psihoyios, T.E. Simos, Trigonometrically fitted predictor–corrector methods for IVPs with oscillating solutions. J. Comput. Appl. Math. 158(1), 135–144 (2003)

    Article  Google Scholar 

  64. A. Konguetsof, T.E. Simos, An exponentially-fitted and trigonometrically-fitted method for the numerical solution of periodic initial-value problems. Comput. Math. Appl. 45(1–3), 547–554 (2003)

    Article  Google Scholar 

  65. Dimitris F. Papadopoulos, T.E. Simos, A modified Runge–Kutta–Nyström method by using phase lag properties for the numerical solution of orbital problems. Appl. Math. Info. Sci 7(2), 433–437 (2013)

    Article  Google Scholar 

  66. Th Monovasilis, Z. Kalogiratou, T.E. Simos, Exponentially fitted symplectic runge–Kutta–Nyström methods. Appl. Math. Info. Sci. 7(1), 81–85 (2013)

    Article  Google Scholar 

  67. G.A. Panopoulos, T.E. Simos, An optimized symmetric 8-step semi-embedded predictor–corrector method for IVPs with oscillating solutions. Appl. Math. Info. Sci. 7(1), 73–80 (2013)

    Article  Google Scholar 

  68. T.E. Simos, On the explicit four-step methods with vanished phase-lag and its first derivative. Appl. Math. Info. Sci. 8(2), 447–458 (2014)

    Article  Google Scholar 

  69. G.A. Panopoulos, T.E. Simos, A new optimized symmetric embedded predictor–corrector method (EPCM) for initial-value problems with oscillatory solutions. Appl. Math. Info. Sci. 8(2), 703–713 (2014)

    Article  Google Scholar 

  70. T.E. Simos, Closed Newton–Cotes trigonometrically-fitted formulae of high order for long-time integration of orbital problems. Appl. Math. Lett. 22(10), 1616–1621 (2009)

    Article  Google Scholar 

  71. T.E. Simos, Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation. Acta Appl. Math. 110(3), 1331–1352 (2009)

    Article  Google Scholar 

  72. S. Stavroyiannis, T.E. Simos, Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs. Appl. Numer. Math. 59(10), 2467–2474 (2009)

    Article  Google Scholar 

  73. T.E. Simos, Optimizing a hybrid two-step method for the numerical solution of the Schrödinger equation and related problems with respect to phase-lag. J. Appl. Math 2012(420387), 17 (2012)

    Google Scholar 

  74. T.E. Simos, New stable closed Newton–Cotes trigonometrically fitted formulae for long-time integration. Abstr. Appl. Anal 2012(182536), 15 (2012)

    Google Scholar 

  75. J. Vigo-Aguiar, H. Ramos, On the choice of the frequency in trigonometrically-fitted methods for periodic problems. J. Comput. Appl. Math. 277, 94–105 (2015)

    Article  Google Scholar 

  76. H. Ramos, J. Vigo-Aguiar, On the frequency choice in trigonometrically fitted methods. Appl. Math. Lett. 23(11), 1378–1381 (2010)

    Article  Google Scholar 

  77. H. Van de Vyver, Frequency evaluation for exponentially fitted Runge–Kutta methods. J. Comput. Appl. Math. 184(2), 442–463 (2005)

    Article  Google Scholar 

  78. J. Martin-Vaquero, J. Vigo-Aguiar, Exponential fitting BDF algorithms: explicit and implicit 0-stable methods. J. Comput. Appl. Math. 192(1), 100–113 (2015)

    Article  Google Scholar 

  79. T.E. Simos, J. Vigo-Aguiar, An exponentially-fitted high order method for long-term integration of periodic initial-value problems. Comput. Phys. Commun. 140(3), 358–365 (2001)

    Article  CAS  Google Scholar 

  80. J. Vigo-Aguiar, H. Ramos, Variable stepsize implementation of multistep methods for \(y ^{\prime \prime } = f(x, y, y ^{\prime })\). J. Comput. Appl. Math. 192(1), 114–131 (2006)

    Article  Google Scholar 

  81. T.E. Simos, J. Vigo-Aguiar, A symmetric high order method with minimal phase-lag for the numerical solution of the Schrödinger equation. Int. J. Mod. Phys. C 12(7), 1035–1042 (2001)

    Article  Google Scholar 

  82. B.A. Wade, A.Q.M. Khaliq, M. Yousuf, J. Vigo-Aguiar, R. Deininger, On smoothing of the Crank–Nicolson and higher order schemes for pricing barrier options. J. Comput. Appl. Math. 204(1), 144–158 (2007)

    Article  Google Scholar 

  83. J. Vigo-Aguiar, S. Natesan, An efficient numerical method for singular perturbation problems. J. Comput. Appl. Math. 192(1), 132–141 (2006)

    Article  Google Scholar 

  84. J. Vigo-Aguiar, J. Martin-Vaquero, H. Ramos, Exponential fitting BDF–Runge–Kutta algorithms. Comput. Phys. Commun. 178(1), 15–34 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are deeply grateful to the anonymous referees, for their valuable comments and suggestions. This research is partially supported by NSFC (No. 11101357) and the foundation of Scientific Research Project of Shandong Universities (No. J14LI04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonglei Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wu, K. & Fang, Y. Exponentially fitted TDRK pairs for the Schrödinger equation. J Math Chem 53, 1470–1487 (2015). https://doi.org/10.1007/s10910-015-0500-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-015-0500-z

Keywords

Navigation