Advertisement

Journal of Mathematical Chemistry

, Volume 52, Issue 6, pp 1552–1562 | Cite as

The supersymmetric quantum mechanics theory and Darboux transformation for the Morse oscillator with an approximate rotational term

  • Damian MikulskiEmail author
  • Krzysztof Eder
  • Jerzy Konarski
Original Paper

Abstract

Anharmonic potentials with a rotational terms are widely used in quantum chemistry of diatomic systems, since they include the influence of centrifugal force on motions of atomic nuclei. For the first time the Taylor-expanded renormalized Morse oscillator is studied within the framework of supersymmetric quantum mechanics theory. The mathematical formalism of supersymmetric quantum mechanics and the Darboux transformation are used to determine the bound states for the Morse anharmonic oscillator with an approximate rotational term. The factorization method has been applied in order to obtain analytical forms of creation and annihilation operators as well as Witten superpotential and isospectral potentials. Moreover, the radial Schrödinger equation with the Darboux potential has been converted into an exactly solvable form of second-order Sturm–Liouville differential equation. To this aim the Darboux transformation has been used. The efficient algebraic approach proposed can be used to solve the Schrödinger equation for other anharmonic exponential potentials with rotational terms.

Keywords

Factorization method rotating Morse oscillator Supersymmetric quantum mechanics Darboux transformation Pekeris transformation Superpotential 

References

  1. 1.
    Y. Ran, L. Xue, S. Hu, R.-K. Su, J. Phys. A: Math. Gen. 33, 9265 (2000)CrossRefGoogle Scholar
  2. 2.
    C. Cari, A. Suparmi, J. Phys.: Conf. Ser. 423, 012031 (2013)Google Scholar
  3. 3.
    S. Flügge, Practical Quantum Mechanics. (Springer-Verlag, Berlin Heidelberg, 1998)Google Scholar
  4. 4.
    L. Ke-jia, Chin. Phys. 10, 277 (2001)CrossRefGoogle Scholar
  5. 5.
    B. Gönül, O. Özer, M. Kocak, Commun. Theor. Phys. 45, 807 (2006)CrossRefGoogle Scholar
  6. 6.
    B. Roy, P. Roy, R. Roychoudhury, Prog. Phys. 39, 211 (1991)CrossRefGoogle Scholar
  7. 7.
    B.P. Mahapatra, N. Santi, N.B. Pradhan, Int. J. Mod. Phys. A 20, 2687 (2005)CrossRefGoogle Scholar
  8. 8.
    R.N. Chaudhuri, M. Mondal, Phys. Rev. A 52, 1850 (1995)CrossRefGoogle Scholar
  9. 9.
    C.B. Compean, M. Kirchbach, J. Phys. A: Math. Gen. 39, 547 (2006)CrossRefGoogle Scholar
  10. 10.
    J. Bougie, A. Gangopadhyaya, J. Mallow, C. Rasinariu, Symmetry 4, 452 (2012)CrossRefGoogle Scholar
  11. 11.
    H. Ying, T. Qiu-Gong, Y. Yan-Fang, Chin. Phys. B 21, 100303 (2012)CrossRefGoogle Scholar
  12. 12.
    M.G. Benedict, B. Molnár, Phys. Rev. A 60, R1737 (1999)CrossRefGoogle Scholar
  13. 13.
    D. Han, X.-H. Song, X. Yang, Phys. A 345, 485 (2005)CrossRefGoogle Scholar
  14. 14.
    H. Fakhri, J. Nonlin, Math. Phys. 11, 361 (2004)Google Scholar
  15. 15.
    A. Khare, U.P. Sukhatme, J. Phys. A: Math. Gen. 26, L901 (1993)CrossRefGoogle Scholar
  16. 16.
    R. Dutt, A. Khare, U.P. Sukhatme, Am. J. Phys. 56, 163 (1988)CrossRefGoogle Scholar
  17. 17.
    M. Daoud, M.R. Kibler, J. Math. Phys. 47, 122108 (2006)CrossRefGoogle Scholar
  18. 18.
    F. Cooper, J.N. Ginocchio, A. Khare, Phys. Rev. D 36, 2458 (1987)CrossRefGoogle Scholar
  19. 19.
    L. Gendenshtein, JETTP Lett. 38, 356 (1983)Google Scholar
  20. 20.
    T. Imbo, U. Sukhatme, Phys. Rev. Lett. 54, 2184 (1985)CrossRefGoogle Scholar
  21. 21.
    F. Cooper, P. Roy, Phys. Lett. A 143, 202 (1990)CrossRefGoogle Scholar
  22. 22.
    A. Comtet, A. Bandrauk, D.K. Campbell, Phys. Lett. B150, 159 (1985)CrossRefGoogle Scholar
  23. 23.
    A. Khare, Phys. Lett. B161, 131 (1985)CrossRefGoogle Scholar
  24. 24.
    A.A. Rajabi, M. Hamzavi, J. Theor. App. Phys. 7, 17 (2013)CrossRefGoogle Scholar
  25. 25.
    U.A. Deta, C. Suparmi, AIP Conf. Proc. 1554, 190 (2013)Google Scholar
  26. 26.
    O. Bayrak, I. Boztosun, H. Ciftci, Int. J. Quantum Chem. 107, 540 (2007)CrossRefGoogle Scholar
  27. 27.
    H. Ciftci, R.L. Hall, N. Saad, J. Phys. A: Math. Gen. 36, 11807 (2003)CrossRefGoogle Scholar
  28. 28.
    O. Özer, Prog. Theor. Phys. 121, 437 (2009)CrossRefGoogle Scholar
  29. 29.
    H. Ciftci, R.L. Hall, N. Saad, J. Phys. A 38, 1147 (2005)CrossRefGoogle Scholar
  30. 30.
    O.M. Al-Dossary, Int. J. Quantum Chem. 107, 2040 (2007)CrossRefGoogle Scholar
  31. 31.
    O. Bayrak, I. Boztosun, J. Phys. A: Math. Gen. 39, 6955 (2006)CrossRefGoogle Scholar
  32. 32.
    S.M. Ikhdair, Eur. J. Phys. 6, 697 (2008)Google Scholar
  33. 33.
    S. Özçelik, M. Simsek, Phys. Lett. A 152, 145 (1991)CrossRefGoogle Scholar
  34. 34.
    G.R. Khan, Eur. Phys. J. D 53, 123 (2012)CrossRefGoogle Scholar
  35. 35.
    H. Ying, T. Qiu-Gong, Y. Yan-Fang, Chin. Phys. B 21, 1 (2012)Google Scholar
  36. 36.
    C.L. Pekeris, Phys. Rev. 45, 98 (1981)CrossRefGoogle Scholar
  37. 37.
    I. Nasser, M.S. Abdelmonem, H. Bahlouli, A.D. Alhaidari, J. Phys. B: At. Mol. Opt. Phys. 41, 215001 (2008)CrossRefGoogle Scholar
  38. 38.
    C.E. Burkhardt, J.J. Leventhal, Am. J. Phys. 75, 687 (2007)CrossRefGoogle Scholar
  39. 39.
    J.J. Peña, M.A. Romero-Romo, J. Morales, J.L. López-Bonilla. Int. J. Quantum Chem. 105, 731 (2005)Google Scholar
  40. 40.
    J. Morales, J.J. Peña, G. Ovando, V. Gaftoi, Int. J. Quantum Chem. 71, 465 (1999)CrossRefGoogle Scholar
  41. 41.
    J.J. Peña, G. Ovando, D Morales-Guzmán. J. Morales Int. J. Quantum Chem. 85, 4 (2001) Google Scholar
  42. 42.
    J. García-Martínez, J. García-Ravelo, J. Morales, J.J. Peña, Int. J. Quantum Chem. 112, 195 (2012)CrossRefGoogle Scholar
  43. 43.
    J.J. Peña, G. Ovando, J. Morales, J. García-Ravelo, J. García, Int. J. Quntum Chem. 108, 1750 (2008)CrossRefGoogle Scholar
  44. 44.
    J.J. Peña, I. Morales, E. Zamora-Gallardo, J. García-Ravelo, Int. J. Quntum Chem. 100, 957 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Damian Mikulski
    • 1
    • 2
    Email author
  • Krzysztof Eder
    • 1
  • Jerzy Konarski
    • 2
  1. 1.Gen. Zamoyska and Helena Modrzejewska High School No. 2PoznanPoland
  2. 2.Department of Theoretical Chemistry, Faculty of ChemistryA. Mickiewicz UniversityPoznanPoland

Personalised recommendations