Skip to main content
Log in

Large-scale analysis of structural branching measures

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Structural branching of graphs has been investigated extensively. Yet, no method/model has yet been developed which captures all aspects of branching meaningfully. Another shortcoming of nearly all related work in this area is the fact that only small sets of example graphs have been used to perform those studies. Instead, we investigate structural branching of graphs statistically by using large sets of exhaustively generated graphs. Our findings explain some of the limits of existing branching measures as well as the search for novel branching measures by using correlation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The star graph is the tree of order \(N\) with \(N-1\) vertices of degree \(1\). The path graph is the tree of order \(N\) without vertices of a degree greater than \(2\).

References

  1. A. Balaban, Highly discriminating distance-based topological index. Chem. Phys. Lett. 89, 399–404 (1982)

    Article  CAS  Google Scholar 

  2. S. Bertz, Branching in graphs and molecules. Discret. Appl. Math. 19, 65–83 (1988)

    Article  Google Scholar 

  3. T. Beyer, S. Hedetniemi, Constant time generation of rooted trees. SIAM J. Comput. 9, 706–712 (1980)

    Article  Google Scholar 

  4. D. Bonchev, Information Theoretic Indices for Characterization of Chemical Structures (Research Studies Press, Chichester, 1983)

    Google Scholar 

  5. D. Bonchev, D.H. Rouvray, Complexity in Chemistry, Biology, and Ecology. Mathematical and Computational Chemistry (Springer, New York, 2005)

    Book  Google Scholar 

  6. D. Bonchev, Topological order in molecules 1. Molecular branching revisited. J. Mol. Struct. (Theochem) 336, 137–156 (1995)

    Article  CAS  Google Scholar 

  7. D. Bonchev, E. Markel, A. Dekmezian, Topological analysis of long-chain branching patterns in polyolefins. J. Chem. Inf. Comput. Sci. 51(5), 1274–1285 (2001)

    Article  Google Scholar 

  8. D. Bonchev, N. Trinajstic, Information theory, distance matrix, and molecular branching. J. Chem. Phys. 67(10), 4517–4533 (1977)

    Article  CAS  Google Scholar 

  9. D. Bonchev, N. Trinajstic, On topological characterization of molecular branching. Int. J. Quant. Chem. 12, 293–303 (1978)

    CAS  Google Scholar 

  10. G. Chartrand, Introductory Graph Theory (Dover, New York, NY, 1985)

    Google Scholar 

  11. J. Claussen, Offdiagonal complexity: a computationally quick complexity measure for graphs and networks. Phys. Stat. Mech. Appl. 375(1), 365–373 (2007)

    Article  Google Scholar 

  12. M. Dehmer, Information processing in complex networks: graph entropy and information functionals. J. Appl. Math. Comput. 201, 82–94 (2008)

    Article  Google Scholar 

  13. M. Dehmer (ed.), Structural Analysis of Complex Networks (Birkhäuser, Cambridge, 2010)

    Google Scholar 

  14. M. Dehmer, Information theory of networks. Symmetry 3, 767–779 (2012)

    Article  Google Scholar 

  15. M. Dehmer, F. Emmert-Streib, T. Gesell, A comparative analysis of multidimensional features of objects resembling sets of graphs. Appl. Math. Comput. 196, 221–235 (2008)

    Article  Google Scholar 

  16. M. Dehmer, F. Emmert-Streib, Y. Tsoy, K. Varmuza, Quantifying structural complexity of graphs: information measures in mathematical chemistry, in Quantum Frontiers of Atoms and Molecules, ed. by M. Putz (Nova Publishing, New York, NY, 2011), pp. 479–498

    Google Scholar 

  17. M. Dehmer, L. Sivakumar, K. Varmuza, Uniquely discriminating molecular structures using eigenvalue-based descriptors. Match Commun. Math. Comput. Chem. 67(1), 147–172 (2012)

    CAS  Google Scholar 

  18. F. Emmert-Streib, M. Dehmer, Networks for systems biology: conceptual connection of data and function. IET Syst. Biol. 5, 185–207 (2011)

    Article  CAS  Google Scholar 

  19. M. Fischermann, I. Gutman, A. Hoffmann, D. Rautenbach, D. Vidovic, L. Volkmann, Extremal chemical trees. Z. Naturforsch. 57a, 49–52 (2002)

    Google Scholar 

  20. B. Furtula, A. Graovac, D. Vukicevic, Augmented Zagreb index. J. Math. Chem. 48(2), 370–380 (2010)

    Article  CAS  Google Scholar 

  21. I. Gutman, The energy of a graph. Ber. Math. Statist. Sekt. Forsch. Graz 103, 1–22 (1978)

    Google Scholar 

  22. I. Gutman, B. Furtula, M. Ivanovic, Notes on trees with minimal atom-bond connectivity index. Match Commun. Math. Comput. Chem. 67, 467–482 (2012)

    CAS  Google Scholar 

  23. I. Gutman, M. Randic, Algebraic characterization of skeletal branching. Chem. Phys. Lett. 47(1), 15–19 (1977)

    Article  CAS  Google Scholar 

  24. I. Gutman, B. Ruščić, T. Trinajstic, C. Wilcox Jr, Graph theory and molecular orbitals. XII. Acyclic polyenes. J. Chem. Phys. 62(9), 3399–3405 (1975)

    Article  CAS  Google Scholar 

  25. I. Gutman, N. Trinajstic, Graph theory and molecular orbitals. total \(\varphi \)-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17(4), 535–538 (1972)

    Article  CAS  Google Scholar 

  26. A. Hagberg, D. Schult, P. Swart, Exploring network structure, dynamics and function using NetworkX. In: G. Varoquaux, T. Vaught, J. Millman (eds.) Proceedings of the 7th python in science conference (SciPy2008) (Pasadena, CA, 2008), pp. 11–15

  27. G. Hall, Eigenvalues of molecular graphs. Bull. Inst. Math. Appl. 17, 70–72 (1981)

    Google Scholar 

  28. F. Harary, Graph Theory (Addison-Wesley Publishing Company, Reading, MA, 1969)

    Google Scholar 

  29. H. Hosoya, Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bull. Chem. Soc. Jpn. 44, 2332–2339 (1971)

    Article  CAS  Google Scholar 

  30. E. Kirby, Sensitivity of topological indices to methyl group branching in octanes and azulenes, or what does a topological index index? J. Chem. Inf. Comput. Sci. 34, 1030–1035 (1994)

    Article  CAS  Google Scholar 

  31. V. Kraus, M. Dehmer, F. Emmert-Streib, Probabilistic inequalities for evaluating structural network measures (2013). Submitted for publication

  32. V. Kraus, M. Dehmer, M. Schutte, On sphere-regular graphs and the extremality of information-theoretic network measures (2013). Accepted for publication

  33. J. Lozán, H. Kausch, Angewandte Statistik für Naturwissenschaftler, 4th edn. (Wissenschaftliche Auswertungen, Hamburg, 2007)

    Google Scholar 

  34. A. Mehler, Social ontologies as generalized nearly acyclic directed graphs: a quantitative graph model of social tagging, in Towards an Information Theory of Complex Networks: Statistical Methods and Applications, ed. by M. Dehmer, F. Emmert-Streib, A. Mehler (Birkhäuser, Boston/Basel, 2011), pp. 259–319

    Chapter  Google Scholar 

  35. L. Müller, K. Kugler, A. Dander, A. Graber, M. Dehmer, QuACN: an R package for analyzing complex biological networks quantitatively. Bioinformatics 27(1), 140–141 (2011). http://cran.r-project.org/web/packages/QuACN/

    Google Scholar 

  36. A. Mowshowitz, Entropy and the complexity of graphs: I. An index of the relative complexity of a graph. Bull. Math. Biophys. 30(1), 175–204 (1968)

    Article  CAS  Google Scholar 

  37. S. Nikolic, G. Kovacevic, A. Milicevic, N. Trinajstic, The Zagreb indices 30 years after. Croat. Chem. Acta 76(2), 113–124 (2003)

    CAS  Google Scholar 

  38. T. Oliphant, Python for scientific computing. Comput. Sci. Eng. 90, 9 (2007)

    Google Scholar 

  39. A. Perdih, M. Perdih, On topological indices indicating branching Part I. The principal component analysis of alkane properties and indices. Acta Chim. Slov. 47, 231–259 (2000)

    CAS  Google Scholar 

  40. M. Randic, On characterization of molecular branching. J. Am. Chem. Soc. 97(23), 6609–6615 (1975)

    Article  CAS  Google Scholar 

  41. H. Schultz, E. Schultz, T. Schultz, Topological organic chemistry. 4. Graph theory, matrix permanents, and topological indices of alkanes. J. Chem. Inf. Comput. Sci. 32(1), 69–72 (1992)

    Article  CAS  Google Scholar 

  42. R. Taylor, Interpretation of the correlation coefficient: a basic review. J. Diagn. Med. Sonogr. 1, 35–39 (1990)

    Article  Google Scholar 

  43. R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Second, Revised and Enlarged edn. Methods and Principles in Medicinal Chemistry (Wiley, Weinheim, 2009)

    Google Scholar 

  44. H. Wiener, Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1(69), 17–20 (1947)

    Article  Google Scholar 

  45. R. Wright, B. Richmond, A. Odlyzko, B. McKay, Constant time generation of free trees. SIAM J. Comput. 15, 540–548 (1986)

    Article  Google Scholar 

Download references

Acknowledgments

Matthias Dehmer thanks the Austrian Science Funds (project P22029-N13) and the Standortagentur Tirol for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Dehmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schutte, M., Dehmer, M. Large-scale analysis of structural branching measures. J Math Chem 52, 805–819 (2014). https://doi.org/10.1007/s10910-013-0294-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-013-0294-9

Keywords

Navigation