Skip to main content
Log in

Solvable model for chemical oscillations

Journal of Mathematical Chemistry Aims and scope Submit manuscript

Cite this article

Abstract

The Lotka–Volterra equation, proposed first with two variables by A. J. Lotka, underpins the well-known classic model for chemical oscillations. The general solutions of the Lotka–Volterra equation, with \(n\) variables, however, remain unknown. We describe a solvable nonlinear model and general solution, previously unstudied for chemical oscillations, that is analogous to the Lotka–Volterra equations with \(n\) variables. This model approximates the Lotka–Volterra equations in the neighbourhood of an equilibrium point and is solvable because it can be shown to be linearized to a set of first-order linear differential equations. The purpose of this report is a description of the general solution of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. A.J. Lotka, J. Am. Chem. Soc. 42, 1595 (1920)

    Article  CAS  Google Scholar 

  2. R.M. May, W.J. Leonard, SIAM J. Appl. Math. 29, 243 (1975)

    Article  Google Scholar 

  3. A. Arneodo et al., J. Math. Biol. 14, 153 (1982)

    Article  CAS  Google Scholar 

  4. C.M. Evans, G.L. Findley, J. Math. Chem. 25, 105 (1999)

    Article  CAS  Google Scholar 

  5. C.M. Evans, G.L. Findley, J. Math. Chem. 25, 181 (1999)

    Article  CAS  Google Scholar 

  6. L. Brenig, Phys. Lett. A 133, 378 (1988)

    Article  Google Scholar 

  7. S.A. Levin, L.A. Segel, Nature 259, 659 (1976)

    Article  Google Scholar 

  8. L.J.S. Allen, Math. Biosci. 65, 1 (1983)

    Article  Google Scholar 

  9. F. Rothe, J. Math. Biol. 3, 319 (1976)

    Article  CAS  Google Scholar 

  10. A. Hastings, J. Math. Biol. 6, 163 (1978)

    Article  Google Scholar 

  11. E.E. Holmes et al., Ecology 75, 17 (1994)

    Article  Google Scholar 

  12. P.L. Chow, W.C. Tam, Bull. Math. Biol. 38, 643 (1976)

    CAS  Google Scholar 

  13. K. Orihashi, Y. Aizawa, Phys. D 240, 1853 (2011)

    Article  Google Scholar 

  14. J.A. Sherratt et al., Proc. Nat. Acad. Sci. U.S.A. 92, 2524 (1995)

    Article  CAS  Google Scholar 

  15. M.W. Hirsch et al., Differential Equations, Dynamical Systems, and an Introduction to Chaos, 2nd edn. (Academic Press, San Diego, 2004)

    Google Scholar 

Download references

Acknowledgments

We thank Yohei Nanazawa for discussions concerning our study. The numerous numerical simulations performed using the RIKEN Integrated Cluster of Clusters (RICC) improved the simulations performed for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eisuke Chikayama.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chikayama, E., Sunaga, Y., Noda, S. et al. Solvable model for chemical oscillations. J Math Chem 52, 399–406 (2014). https://doi.org/10.1007/s10910-013-0275-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-013-0275-z

Keywords

Mathematics Subject Classification

Navigation