Skip to main content
Log in

Local topology at limited resource induced suboptimal traps on the quantum control landscape

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In a quantum optimal control experiment a system is driven towards a target observable value with a tailored external field. The underlying quantum control landscape, defined by the observable as a function of the control variables, lacks suboptimal extrema upon satisfaction of certain physical assumptions. This favorable topology implies that upon climbing the landscape to seek an optimal control field, a steepest ascent algorithm should not halt prematurely at suboptimal critical points, or traps. One of the important aforementioned assumptions is that no limitations are imposed on the control resources. Constraints on the control restricts access to certain regions of the landscape, potentially preventing optimal performance through convergence to limited resource induced suboptimal traps. This work develops mathematical tools to explore the local landscape structure around suboptimal critical points. The landscape structure may be favorably altered by systematically relaxing the control resources. In this fashion, isolated suboptimal critical points may be transformed into extensive level sets and then to saddle points permitting further landscape ascent. Time-independent kinematic controls are employed as stand-ins for traditional dynamic controls to allow for performing a simpler constrained resource landscape analysis. The kinematic controls can be directly transferred to their dynamic counterparts at any juncture of the kinematic analysis. The numerical simulations employ a family of landscape exploration algorithms while imposing constraints on the kinematic controls. Particular algorithms are introduced to meet the goals of either climbing the landscape or seeking specific changes in the topology of the landscape by relaxing the control resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Abe, Y. Ohsuki, Y. Fujimura, Z. Lan, W. Domcke, Geometric phase effects in the coherent control of the branching ratio of photodissociation products of phenol. J. Chem. Phys. 124, 224316 (2006)

    Article  CAS  Google Scholar 

  2. C. Brif, R. Chakrabarti, H. Rabitz, Control of quantum phenomena: past, present and future. New J. Phys. 12, 075008 (2010)

    Article  Google Scholar 

  3. G. Cerullo, S. Silvestri, Ultrafast optical parametric amplifiers. Rev. Sci. Instrum. 74, 1 (2003)

    Article  CAS  Google Scholar 

  4. P. Domachuk, N.A. Wolchover, M. Cronin-Golomb, A. Wang, A.K. George, C.M.B. Cordeiro, J.C. Knight, F.G. Omenetto, Over 4000 nm bandwidth of mid-ir supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite pcfs. Opt. Express 16, 7161 (2008). doi:10.1364/OE.16.007161. http://www.opticsexpress.org/abstract.cfm?URI=oe-16-10-7161

  5. D. Dong, I. Petersen, Quantum control theory and applications: a survey. IET Control Theory Appl. 4, 2651 (2010)

    Article  Google Scholar 

  6. A. Donovan, V. Beltrani, H. Rabitz, Exploring the impact of constraints in quantum optimal control through a kinematic formulation. Chem. Phys. 425, 46 (2013)

    Google Scholar 

  7. A. Donovan, H. Rabitz, Exploring constrained dynamic control variables in quantum control (2013, in preparation)

  8. J. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135 (2006)

    Article  CAS  Google Scholar 

  9. K.D. Greve, P. McMahon, D. Press, T. Ladd, D. Bisping, C. Schneider, M. Kamp, L. Worschech, S. Höfling, A. Forchel, Y. Yamamoto, Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nat. Phys. 7, 872 (2011)

    Article  CAS  Google Scholar 

  10. F. Grossman, L. Feng, G. Schmidt, T. Kunert, R. Schmidt, Optimal control of a molecular cis-trans isomerization model. Europhys. Lett. 60, 201 (2002)

    Article  Google Scholar 

  11. R. Hildner, D. Brinks, N. van Hulst, Femtosecond coherence and quantum control of single molecules at room temperature. Nat. Phys. 7, 172 (2010)

    Article  CAS  Google Scholar 

  12. M. Lapert, R. Tehini, G. Turinici, D. Sugny, Monotonically convergent optimal control theory of quantum systems with spectral constraints on the control field. Phys. Rev. A 79, 063411 (2009)

    Article  CAS  Google Scholar 

  13. J. Möhring, T. Buckup, M. Motzkus, A quantum control spectroscopy approach by direct UV femtosecond pulse shaping. IEEE J. Sel. Top. Quantum Electron. 18, 449 (2012)

    Article  CAS  Google Scholar 

  14. K. Moore, H. Rabitz, Exploring constrained quantum control landscapes. J. Chem. Phys. 137, 134113 (2012)

    Google Scholar 

  15. K. Moore, M. Hsieh, H. Rabitz, On the relationship between quantum control landscape structure and optimization complexity. J. Chem. Phys. 128, 154117 (2008)

    Article  CAS  Google Scholar 

  16. K. Moore, H. Rabitz, Exploring quantum control landscapes: topology, features, and optimization scaling. Phys. Rev. A 84, 012109 (2011)

    Article  CAS  Google Scholar 

  17. K. Moore, C. Brif, M. Grace, A. Donovan, D. Hocker, T.S. Ho, R. Wu, H. Rabitz, Exploring the tradeoff between fidelity and time optimal control of quantum unitary transformations. Phys. Rev. A 86, 062309 (2012)

    Article  CAS  Google Scholar 

  18. A. Natan, U. Lev, V. Prabhudesai, B. Bruner, D. Strasser, D. Schwalm, I. Ben-Itzhak, O. Heber, D. Zajfman, Y. Silberberg, Quantum control of photodissociation by manipulation of bond softening. Phys. Rev. A 86, 043418 (2012)

    Article  CAS  Google Scholar 

  19. A. Peirce, M. Dahleh, H. Rabitz, Optimal control of quantum-mechanical systems: existence, numerical approximation, and applications. Phys. Rev. A 37, 4950 (1988)

    Article  Google Scholar 

  20. H. Rabitz, M. Hsieh, C. Rosenthal, Quantum optimally controlled transition landscapes. Science 303, 1998 (2004)

    Article  CAS  Google Scholar 

  21. H. Rabitz, M. Hsieh, C. Rosenthal, Landscape for optimal control of quantum-mechanical unitary transformations. Phys. Rev. A 72, 052337 (2005)

    Article  CAS  Google Scholar 

  22. H. Rabitz, T.S. Ho, M. Hsieh, R. Kosut, M. Demiralp, Topology of optimally controlled quantum mechanical transition probability landscapes. Phys. Rev. A 74, 012721 (2006)

    Article  CAS  Google Scholar 

  23. V. Ramakrishna, M. Salapaka, M. Dahleh, H. Rabitz, A. Pierce, Controllability of molecular systems. Phys. Rev. A 51, 960 (1995)

    Article  CAS  Google Scholar 

  24. J. Roslund, H. Rabitz, Gradient algorithm applied to laboratory quantum control. Phys. Rev. A 79, 053417 (2009)

    Article  CAS  Google Scholar 

  25. A. Rothman, T.S. Ho, H. Rabitz, Observable-preserving control of quantum dynamics over a family of related systems. Phys. Rev. A 72, 023416 (2005)

    Article  CAS  Google Scholar 

  26. A. Rothman, T.S. Ho, H. Rabitz, Exploring the level sets of quantum control landscapes. Phys. Rev. A 73, 053401 (2006)

    Article  CAS  Google Scholar 

  27. S. Schirmer, H. Fu, A. Solomon, Complete controllability of quantum systems. Phys. Rev. A 63, 063410 (2001)

    Article  CAS  Google Scholar 

  28. C.C. Shu, N. Henriksen, Phase-only shaped laser pulses in optimal control theory: application to indirect photofragmentation dynamics in the weak-field limit. J. Chem. Phys. 136, 044303 (2012)

    Article  CAS  Google Scholar 

  29. I. Sola, V. Malinovsky, D. Tannor, Optimal pulse sequences for population transfer in multilevel systems. Phys. Rev. A 60, 3081 (1999)

    Article  CAS  Google Scholar 

  30. P. von den Hoff, S. Thallmair, M. Kowalewski, R. Siemering, R. de Vivie-Riedle, Optimal control theory-closing the gap between theory and experiment. Phys. Chem. Chem. Phys. 14, 14460 (2012)

    Article  CAS  Google Scholar 

  31. J. Werschnik, E. Gross, Tailoring laser pulses with spectral and fluence constraints using optimal control theory. J. Opt. B 7, S300 (2005)

    Article  Google Scholar 

  32. J. Werschnik, E.K.U. Gross, Quantum optimal control theory. J. Phys. B 40, R175 (2007)

    Article  CAS  Google Scholar 

  33. S. Zou, G. Balint-Kuri, F. Manby, Vibrationally selective optimal control of alignment and orientation using infrared laser pulses: Application to carbon monoxide. J. Chem. Phys. 127, 044107 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A.D. acknowledges support from the Program in Plasma Science and Technology at Princeton University and thanks David Hocker (Princeton University) for his assistance in generating Fig. 1. The authors thank Professor Carey Rosenthal (Drexel University) for insightful discussions. We also acknowledge support from the DOE (Grant Number DE-FG-02-02ER15344), NSF (Grant Number CHE-1058644), and the ARO (Grant Number W911NF-13-1-0237).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herschel Rabitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donovan, A., Beltrani, V. & Rabitz, H. Local topology at limited resource induced suboptimal traps on the quantum control landscape. J Math Chem 52, 407–429 (2014). https://doi.org/10.1007/s10910-013-0269-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-013-0269-x

Keywords

Navigation