Journal of Mathematical Chemistry

, Volume 51, Issue 8, pp 1961–1980 | Cite as

Aliasing functions and a dynamic approach to optimizing spectral widths in 2D experiments

Original Paper

Abstract

We reduce the modulo function that describes the aliasing of an NMR signal to a floor function form. An analysis of this function is carried out and an expression that defines its points of discontinuity is derived. Based only on this definition we develop a new method to optimize the spectral widths in the \(^{13}\text{ C }\) dimension of heteronuclear 2D experiments of small organic compounds using neither the modulo function nor the definition of the overlap points. We apply this method to the carbon chemical shifts of cholesterol, and find that it unambiguously assigns all of the signals acquired in the aliased Heteronuclear Single Quantum Coherence spectrum of cholesterol with the calculated spectral width. Previous reports do not show a fully resolved 2D spectrum of cholesterol.

Keywords

Aliasing Spectral widths optimization High resolution in indirect dimensions 2D-NMR spectroscopy 

Supplementary material

10910_2013_191_MOESM1_ESM.nb (38 kb)
Supplementary material 1 (nb 37 KB)
10910_2013_191_MOESM2_ESM.txt (0 kb)
Supplementary material 2 (txt 0 KB)

References

  1. 1.
    J.W. Blunt, J.B. Stothers, Org. Magn. Reson. 9, 439 (1977)CrossRefGoogle Scholar
  2. 2.
    W. Brown, Matrices and Vector Spaces (Marcel Dekker, Inc., New York, 1991)Google Scholar
  3. 3.
    T. Claridge, High-Resolution NMR Techniques in Organic Chemistry (Pergamon, Oxford, 1999)Google Scholar
  4. 4.
    Delta NMR Processing and Control Software, Version 4.3.6. (Jeol USA, Inc., Peabody, 2006)Google Scholar
  5. 5.
    A.J. Dunn, P.J. Sidebottom, Magn. Reson. Chem. 43, 124 (2005)CrossRefGoogle Scholar
  6. 6.
    J.F. Gómez-Reyes, A. Ariza-Castolo, Analysis of the folding functions and a dynamic approach to the problem of optimizing spectral widths in 2D experiments. 53rd Experimental Nuclear Magnetic Resonance Conference (2012). http://www.enc-conference.org/portals/0/flipbook/. Accessed 26 June 2012
  7. 7.
    J.F. Gómez-Reyes, A. Ariza-Castolo, Analysis of the folding functions and a dynamic approach to the problem of optimizing spectral widths in the 13C dimension of heteronuclear 2D experiments. 53rd Experimental Nuclear Magnetic Resonance Conference (2012). http://www.enc-conference.org/portals/0/Abstracts2012/ENC20121291.1250VER.1.pdf. Accessed 26 June 2012
  8. 8.
    R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics (Addison-Wesley, Reading, 1988), pp 67–69, 81–83Google Scholar
  9. 9.
    R.K. Harris, E.D. Becker, R. Goodfellow, P. Granger, Magn. Reson. Chem. 40, 489 (2002)CrossRefGoogle Scholar
  10. 10.
    H. Hu, A.J. Shaka, J. Magn. Reson. 136, 54 (1999)CrossRefGoogle Scholar
  11. 11.
    D. Jeannerat, in Encyclopedia of Magnetic Resonance, ed. by R.K. Harris, R.E. Wasylishen, (Wiley, Chichester, 2011), Published online. doi:10.1002/9780470034590.emrstm1187
  12. 12.
    D. Jeannerat, Magn. Reson. Chem. 38, 415 (2000)CrossRefGoogle Scholar
  13. 13.
    D. Jeannerat, Magn. Reson. Chem. 41, 3 (2003)CrossRefGoogle Scholar
  14. 14.
    D. Jeannerat, J. Magn. Reson. 186, 112 (2007)CrossRefGoogle Scholar
  15. 15.
    P. Joseph-Nathan, G. Mejía, D. Abramo-Bruno, J. Am. Chem. Soc. 101, 1289 (1979)CrossRefGoogle Scholar
  16. 16.
    J. Keeler, Understanding NMR Spectroscopy (Wiley, Chichester, 2005)Google Scholar
  17. 17.
    L. Leithold, The Calculus With Analytic Geometry, 4th edn. (Harper & Row, New York, 1981)Google Scholar
  18. 18.
    H.H. Mantsch, I.C.P. Smith, Can. J. Chem. 51, 1384 (1973)CrossRefGoogle Scholar
  19. 19.
    L. Nyhoff, C++: An Introduction to Data Structures (Prentice Hall, Upper Saddle River, 1999)Google Scholar
  20. 20.
    P. Wellin, S. Kamin, R. Gaylord, An Introduction to Programming with Mathematica, 75, 3rd ed. (Cambridge University Press, Cambridge, 2005), pp 53–59Google Scholar
  21. 21.
    Wolfram Mathematica® 8 For Students, version 8.0.0.0. (Wolfram Research, Inc., Champaign, 2010)Google Scholar
  22. 22.
    T. Worth, Basic For Everyone (Prentice Hall, Englewood Cliffs, 1976)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Departamento de QuímicaCentro de Investigación y de Estudios Avanzados del IPNMexicoMexico

Personalised recommendations