Journal of Mathematical Chemistry

, Volume 51, Issue 5, pp 1397–1409 | Cite as

Variational principle, Hohenberg–Kohn theorem, and density function origin shifts

Original Paper

Abstract

Origin shifts performed on the density functions (DF) permit to express the Hohenberg–Kohn theorem (HKT) as a consequence of the variational principle. Upon ordering the expectation values of Hermitian operators, an extended variational principle can be described using origin shifted DF. Under some restrictions, HKT can be extended for some specific Hermitian operators.

Keywords

Density function origin shift Variational principle  Hohenberg–Kohn Theorem Extended variational principle 

References

  1. 1.
    P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864–871 (1964)CrossRefGoogle Scholar
  2. 2.
    E.H. Lieb, Intl. J. Quant. Chem. 24, 243–277 (1983)CrossRefGoogle Scholar
  3. 3.
    P.C. Hohenberg, W. Kohn, L.J. Sham, Adv. Quantum Chem. 21, 7–25 (1990)CrossRefGoogle Scholar
  4. 4.
    A. Savin, On degeneracy, near-degeneracy and density functional theory, in Recent Developments in Density Functional Theory, ed. by J.M. Seminario (Elsevier, Amsterdam, 1996), pp. 327–358Google Scholar
  5. 5.
    E.S. Kriatchko, Intl. J. Quantum Chem. 103, 818–823 (2005)CrossRefGoogle Scholar
  6. 6.
    E.S. Kriatchko, Intl. J. Quantum Chem. 106, 1795–1798 (2006)CrossRefGoogle Scholar
  7. 7.
    P.W. Ayers, S. Golden, M. Levy, J. Chem. Phys. 124, 054101:1–054101-7 (2006)Google Scholar
  8. 8.
    R. Pino, O. Bokanowski, E.V. Ludeña, R.L. Boada, Theor. Chem. Acc. 118, 557–561 (2007)CrossRefGoogle Scholar
  9. 9.
    P.W. Ayers, S. Liu, Phys. Rev. A 75(022514), 1–12 (2007)Google Scholar
  10. 10.
    P.W. Ayers, M. Levy, Phys. Rev. A 80(012508), 1–16 (2009)Google Scholar
  11. 11.
    A. Savin, Chem. Phys. 356, 91–97 (2009)CrossRefGoogle Scholar
  12. 12.
    M. Levy, Int. J. Quantum Chem. 210, 3140–3144 (2010)CrossRefGoogle Scholar
  13. 13.
    A. Zhou, J. Math. Chem. 50, 2746–2754 (2012)CrossRefGoogle Scholar
  14. 14.
    K.D. Sen, E. Besalú, R. Carbó-Dorca, J. Math. Chem. 25, 253–257 (1999)CrossRefGoogle Scholar
  15. 15.
    R. Carbó-Dorca, P. Bultinck, J. Math. Chem. 34, 75–82 (2003)CrossRefGoogle Scholar
  16. 16.
    R. Carbó-Dorca, E. Besalú, X. Gironés, Adv. Quantum Chem. 38, 3–63 (2000)Google Scholar
  17. 17.
    R. Carbó-Dorca, J. Karwowski, Int. J. Quantum Chem. 84(3), 331–337 (2001)CrossRefGoogle Scholar
  18. 18.
    R. Carbó-Dorca, Rev. Mod. Quantum Chem. 15, 401–412 (2002)Google Scholar
  19. 19.
    P.G. Mezey, Mol. Phys. 96, 169–178 (1999)CrossRefGoogle Scholar
  20. 20.
    P.G. Mezey, Topological similarity of molecules and the consequences of the holographic electron density theorem, an extension of the Hohenberg–Kohn theorem, in Fundamentals of Molecular Similarity, ed. by R. Carbó-Dorca, X. Gironés, P.G. Mezey (Kluwer Academic—Plenum Press, New York, 2001), pp. 113–124Google Scholar
  21. 21.
    R. Carbó-Dorca, E. Besalú, J. Comput. Chem. 31, 2452–2462 (2010)CrossRefGoogle Scholar
  22. 22.
    R. Carbó-Dorca, E. Besalú, J. Math. Chem. 48, 914–924 (2010)CrossRefGoogle Scholar
  23. 23.
    R. Carbó-Dorca, E. Besalú, J. Math. Chem. 49, 836–842 (2011)CrossRefGoogle Scholar
  24. 24.
    E. Besalú, R. Carbó-Dorca, J. Chem. Theor. Comput. 8, 854–861 (2012)CrossRefGoogle Scholar
  25. 25.
    R. Carbó-Dorca, E. Besalú, J. Math. Chem. 50, 1161–1178 (2012)CrossRefGoogle Scholar
  26. 26.
    R. Carbó-Dorca, J. Math. Chem. (2012). doi:10.1007/s10910-012-0083-x Google Scholar
  27. 27.
    R. Carbó-Dorca, J. Math. Chem. (2012). doi:10.1007/s10910-012-0120-9 Google Scholar
  28. 28.
    R. Carbó-Dorca, J. Comput. Chem. (2012). doi:10.1002/jcc.23198
  29. 29.
    R. Carbó-Dorca, J. Math. Chem. 23, 365–375 (1998)CrossRefGoogle Scholar
  30. 30.
    R. Carbó-Dorca, J. Math. Chem. 32, 201–223 (2002)CrossRefGoogle Scholar
  31. 31.
    R. Carbó-Dorca, E. Besalú, J. Math. Chem. 50, 210–219 (2012)CrossRefGoogle Scholar
  32. 32.
    P. Bultinck, R. Carbó-Dorca, J. Math. Chem. 36, 191–200 (2004)CrossRefGoogle Scholar
  33. 33.
    R. Carbó-Dorca, Adv. Quantum Chem. 49, 121–207 (2005)CrossRefGoogle Scholar
  34. 34.
    R. Carbó-Dorca, X. Gironés, Int. J. Quantum Chem. 101, 8–20 (2005)CrossRefGoogle Scholar
  35. 35.
    J. Cioslowsky, E.D. Fleischmann, J. Am. Chem. Soc. 113, 64–67 (1991)CrossRefGoogle Scholar
  36. 36.
    R. Carbó-Dorca, On density function coordinate matrix. IQC technical report TR-2012-13Google Scholar
  37. 37.
    R. Carbó-Dorca, J. Mol. Struct. Theochem. 537, 41–54 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institut de Química ComputacionalUniversitat de GironaGironaSpain

Personalised recommendations