Skip to main content
Log in

Qualitative analysis of the chemostat model with variable yield and a time delay

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we consider the chemostat model with inhibitory exponential substrate, variable yield and a time delay. A detailed qualitative analysis about existence and boundedness of its solutions and the local asymptotic stability of its equilibria are carried out. The Hopf bifurcation of solutions to the system is studied. Using Lyapunov–LaSalle invariance principle, we show that the washout equilibrium is global asymptotic stability for any time delay. Based on some known techniques on limit sets of differential dynamical systems, we show that, for any time delay, the chemostat model is permanent if and only if only one positive equilibrium exits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Beretta, Y. Takeuchi, Qualitative properties of Chemostat equation with time delays: boundedness, local and global asymptotic stability. Diff. Eqns. Dyn. Sys. 2, 19–40 (1994)

    Google Scholar 

  2. L. Chen, J. Chen, Nonlinear Biology Dynamics (Science Press, Beijing, 1993)

    Google Scholar 

  3. H.L. Smith, P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  4. G. Fu, W. Ma, S. Ruan, Qualitative analysis of a Chemostat model with inhibitory exponential substrate uptake. Chaos Solitons Fract. 23, 873–886 (2005)

    Article  CAS  Google Scholar 

  5. G. Fu, W. Ma, Hopf bifurcations of a variable yield chemostat model with inhibitory exponential substrate uptake. Chaos Solitons Fract. 30, 845–850 (2006)

    Article  CAS  Google Scholar 

  6. F. Wang, C. Hao, L. Chen, Bifurcation and chaos in a Tessiet type food chain chemostat with pulsed input and washout. Chaos Solitons Fract. 32, 1547–1561 (2007)

    Article  Google Scholar 

  7. F. Wang, S. Zhang, G. Pang, Analysis of a Tessiet type food chain chemostat with k-times periodically pulsed input. J. Math. Chem. 43, 1470–1488 (2008)

    Article  CAS  Google Scholar 

  8. D. Herbert, Some principles of continuous culture, in Recent Progress in Microbiology, ed. by G. Tunevall (Almqvist and Wiksell, Stockholm, 1959)

  9. N.S. Panikov, Microbial Growth Kinetics (Chapman and Hall, London, 1995)

    Google Scholar 

  10. P.S. Crooke, R.D. Tanner, Hopf bifurcations for a variable yield continuous fermentation model. Int. J. Eng. Sci. 20, 439–443 (1982)

    Article  CAS  Google Scholar 

  11. P.S. Crooke, C.-J. Wei, R.D. Tanner, The effect of the specific growth rate and yield expressions on the existence of oscillatory behaviour of a continuous fermentation model. Chem. Eng. Commun. 6, 333–347 (1980)

    Article  CAS  Google Scholar 

  12. X. Huang, Limit cycles in a continuous fermentation model. J. Math. Chem. 5, 287–296 (1990)

    Article  CAS  Google Scholar 

  13. G. Song, X. Li, J. Dou, Q. He, The Hopf bifurcation of a kind of Chemostat system with intrinsic supersession form. Sys. Sci Math. Sci. 21, 486–490 (2001)

    Google Scholar 

  14. J. Liu, S. Zheng, Qualitive analysis of a kind of model with competition in microorganism continous culture. J. Biomath. 17, 399–405 (2002)

    Google Scholar 

  15. S.S. Pilyugin, P. Waltman, Multiple limit cycles in the chemostat with variable yield. Math. Biosci. 182, 151–166 (2003)

    Article  CAS  Google Scholar 

  16. X. Huang, L. Zhu, Athree-dimensional chemostat with quadratic yields. J. Math. Chem. 38, 405–418 (2005)

    Google Scholar 

  17. S. Sun, L. Chen, Complex dynamics of a chemostat with variable yield and periodically impulsive perturbation on the substrate. J. Math. Chem. 43, 338–349 (2008)

    Article  CAS  Google Scholar 

  18. M.I. Nelson, H.S. Sidhu, Analysis of a chemostat model with variable yield coefficient: Tessier kinetics. J. Math. Chem. 46, 303–321 (2009)

    Article  CAS  Google Scholar 

  19. H. Zhang, G. Paul, J.N. Juan, L. Chen, On the impulsive perturbation and bifurcation of solutions for a model of Chemostat with variable yield. Appl. Math. Mech. 30, 873–882 (2009)

    CAS  Google Scholar 

  20. R.T. Alqahtani, M.I. Nelson, A.L. Worthy, Analysis of a Chemostat model with variable yield coefficient: Contois kinetics. ANZIAM J. 53, C155–C171 (2012)

    Google Scholar 

  21. W. Wu, H.-Y. Chang, Output regulation of self-oscillating biosystems: model-based proportionalintegral/ proportional-integral-derivative (pi/pid) control approaches. Ind. Eng. Chem. Res. 46, 4282–4288 (2007)

    Article  CAS  Google Scholar 

  22. Z. Ling, T. Zhang, Qualitative analysis for a class of microbial continuous culturemodel with variable yield in Chemostat. J. Univ. Shanghai Sci. Technol. 4, 373–376 (2012)

    Google Scholar 

  23. X. Huang, L. Zhu, Bifurcation in the stable manifold of the bioreactor with nth and mth order polynomial yields. J. Math. Chem. 46, 199–213 (2009)

    Article  CAS  Google Scholar 

  24. L. Zhu, X. Huang, Relative positions of limit cycles in the continuous culture vessel with variable yield. J. Math. Chem. 38, 119–127 (2005)

    Article  Google Scholar 

  25. X. Huang, L. Zhu, E.H.C. Chang, Limit cycles in a chemostat with general variable yields and growth rates. Nonlinear Anal. Real World Appl. 8, 165–173 (2007)

    Google Scholar 

  26. L. Zhu, X. Huang, H. Su, Bifurcation for a functional yield chemostat when one competitor produces a toxin. J. Math. Anal. Appl. 329, 891–903 (2007)

    Article  Google Scholar 

  27. T. Zhao, Global periodic solutions for a differential delay system modeling a microbial population in the Chemostat. J. Math. Anal. Appl. 193, 329–352 (1995)

    Article  Google Scholar 

  28. S. Ruan, The dynamics of Chemostat models. J. Central China Normal Univ. (Nat. Sci.) 31, 377–397 (1997)

    Google Scholar 

  29. G. Fu, W. Ma, Chemostat dynamics models described by differential equations (I, II). Microbiology (in Chinese) 31(5), 136–139; 31(6), 128–131 (2004)

  30. H. Xia, S.K. Wolkowicz Gail, Transient oscillations induced by delayed growth response in the hemostat. J. Math. Biol. 50, 489–530 (2005)

    Article  Google Scholar 

  31. L. Wang, G.S.K. Wolkowicz, A delayed chemostat model with general nonmonotone response functions and differential removal rates. J. Math. Anal. Appl. 321, 452–468 (2006)

    Article  Google Scholar 

  32. Q. Dong, W. Ma, Stability analysis of a ratio-dependent Chemostat model with variable yield and time delay. J. Sys. Sci. Math. Sci. 29, 228–241 (2009)

    Google Scholar 

  33. S. Yuan, W. Zhang, M. Han, Global asymptotic behavior in chemostat-type competition models with delay. Nonlinear Anal. Real World Appl. 10, 1305–1320 (2009)

    Article  Google Scholar 

  34. S. Yuan, T. Zhang, Dynamics of a plasmid chemostat model with periodic nutrient input and delayed nutrient recycling. Nonlinear Anal. Real World Appl. 13, 2104–2119 (2012)

    Article  CAS  Google Scholar 

  35. Y. Kuang, Delay Differential Equations with Applications in Population Dynamics (Academic Press, San Diego, 1993)

    Google Scholar 

  36. V. Lakshmikantham, G.S. Leela, Differential and Integral Inequalities vol. I and II. (Academic Press, New York, 1969)

  37. M. Song, W. Ma, Asymptotic properties of a revised SIR epidemic model with density dependent birth rate and time delay. Dyn. Cont. Discret. Impuls. Syst. 13, 199–208 (2006)

    Google Scholar 

  38. W. Ma, Y. Takeuchi, T. Hara, E. Beretta, Permanence of an SIR epidemic model with distributed time delays. Tohoku Math. J. 54, 581–591 (2002)

    Article  Google Scholar 

  39. G. Butler, H.I. Freedman, P. Waltman, Uniformly persistent systems. Proc. Am. Math. Soc. 96, 425–430 (1986)

    Article  Google Scholar 

  40. J.K. Hale, P. Waltman, Persistence in infinite-dimensional systems. SIAM J. Math. Anal. 20, 388–395 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglai Dong.

Additional information

The research is partially supported by NSFC(11071013), the Funds of the construction of high-level university in Shaanxi province (2012SXTS06) and the Funds of Yanan University (YD2012-03).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, Q., Ma, W. Qualitative analysis of the chemostat model with variable yield and a time delay. J Math Chem 51, 1274–1292 (2013). https://doi.org/10.1007/s10910-013-0144-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-013-0144-9

Keywords

Navigation