Skip to main content
Log in

Star graph representations of chiral objects in graph theory

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Planar chirality of objects is a problem with important applications in many fields of natural sciences, especially in chemistry and pharmacology. The analysis of chirality properties can be studied using n-polyominoes and planar graphs. In this paper we show that graph representations of chiral objects can be star-graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. http://www.thalidomide.ca/

  2. Harary F., Mezey P.G.: Chiral and Achiral Square-cell Configurations; The Degree of Chirality, New Develoments in Molecular Chirality, pp. 241–256. Kluwer Academic Publisher, Dordrecht (1991)

    Google Scholar 

  3. Harary F., Robinson R.W.: The number of achiral trees. J. Reine Angew. Math. 278, 322–332 (1975)

    Google Scholar 

  4. Mezey P. G.: Similarity analysis in two and three dimensions using lattice animals and polycubes. J. Math. Chem. 11, 27–45 (1992)

    Article  Google Scholar 

  5. Mezey P.G.: Chirality measure and graph representations. Comput. Math. Appl. 34(11), 105–112 (1997)

    Article  Google Scholar 

  6. Mezey P.G.: Shape in Chemistry An Introduction to Molecular Shape and Topology. VCH Publishers, New York (1993)

    Google Scholar 

  7. Kitaigorodski A.I.: Organic Chemical Crystallography, Chapter 4, pp. 75–100. Consultants Bureau, New York (1961)

    Google Scholar 

  8. Mislow K., Siegel J.: Stereoisomerism and local chirality. J. Am. Chem. Soc. 106, 3319–3328 (1984)

    Article  CAS  Google Scholar 

  9. Rassat A.: Chimie organique physique—Un critère de classement des systèmes chiraux de points à partir de la distance au sens de Haussdorf. Compt. Rend. Acad. Sci. (Paris) II 299, 53–55 (1984)

    CAS  Google Scholar 

  10. Gilat G.: On quantifying chirality—obstacles and problems towards unification. J. Math. Chem. 15, 197–205 (1994)

    Article  CAS  Google Scholar 

  11. Gilat G.: coefficient—a measure of the amount of structural chirality. J. Phys. A Math. Gen. 22, L545–L550 (1989)

    Article  CAS  Google Scholar 

  12. Gilat G.: On the quantification of asymetry in nature. Found. Phys. Lett. 3, 189–196 (1990)

    Article  Google Scholar 

  13. Avnir D., Meyer A.Y.: Quantifying the degree of molecular shape distortion. A chirality measure. J. Mol. Struct. (Theochem) 226, 211–222 (1991)

    Article  Google Scholar 

  14. Harary F., Lewinter M.: Spanning subgraphs of a hypercube. Int. J. Comput. Math. 25(1), 1–4 (1988)

    Article  Google Scholar 

  15. Cahn R.S., Ingold C.K., Prelog V.: Specification of molecular chirality. Angew. Chem. Int. Ed. Engl. 5, 385–415 (1966)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béla Barabás.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barabás, B., Fülöp, O. Star graph representations of chiral objects in graph theory. J Math Chem 50, 1514–1520 (2012). https://doi.org/10.1007/s10910-012-9986-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-9986-9

Keywords

Navigation