Skip to main content
Log in

A contemporary linear representation theory for ordinary differential equations: multilinear algebra in folded arrays (folarrs) perspective and its use in multidimensional case

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we extend the framework describing the probabilistic evolution of explicit unidimensional ODEs, which is described in the companion of this paper, to multidimensional cases. We show that an infinite set of linear ODEs accompanied by an initial condition (represented with an infinite vector) can also be constructed for the multidimensional cases. The principles that underly the construction of the equations and the truncated approximants of the solutions are the same. The crucial addition of this paper is the use of multiindex, folded and unfolded vectors and matrices. Unlike our earlier work on folded arrays, which relied on probabilistic principles of construction, in this work, we use a purely mathematical approach for the construction of the multidimensional structures. We provide a procedural description of how such constructions can be made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Demiralp, E. Demiralp. A contemporary linear representation theory for ordinary differential equations: probabilistic evolutions and related approximants for one dimensional case. J. Math. Chem. (2012). doi:10.1007/s10910-012-0070-2

  2. M. Demiralp, E. Demiralp, L. Hernandez-Garcia. A probabilistic foundation for dynamical systems: theoretical background and mathematical formulation. J. Math. Chem. (2012). doi:10.1007/s10910-011-9929-x

  3. M. Demiralp, E. Demiralp, L. Hernandez-Garcia. A probabilistic foundation for dynamical systems: phenomenological reasoning and principal characteristics of probabilistic evolution. J. Math. Chem. (2012). doi:10.1007/s10910-011-9930-4

  4. E. Demiralp, M. Demiralp. Dynamical causal modeling from a quantum dynamical perspective, in AIP Proceedings for the International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2010), Symposium 112, Recent Developments in Hilbert Space Tools and Methodology for Scientific Computing, vol 1281 (Rhodes, Greece, 2010), pp. 1954–1959 (19–26 Sept 2010)

  5. Demiralp M., Rabitz H.: Lie algebraic factorization of multivariable evolution operators: definition and the solution of the canonical problem. Int. J. Eng. Sci. 31, 307–331 (1993)

    Article  Google Scholar 

  6. Demiralp M., Rabitz H.: Lie algebraic factorization of multivariable evolution operators: convergence theorems for the canonical case. Int. J. Eng. Sci. 37, 333–346 (1993)

    Article  Google Scholar 

  7. Marcus M.: Finite Dimensional Multilinear Algebra. Dekker, New York (1975)

    Google Scholar 

  8. Kruskal J.B.: Three-way arrays: rank and uniqueness of trilinear decompositions with applications to arithmetic complexity and statistics. Linear Algebra Appl. 18, 95–138 (1977)

    Article  Google Scholar 

  9. J.B. Kruskal, in Rank, Decomposition, and Uniqueness for 3-way and N-way Arrays, Multiway Data Analysis, ed. by R. Coppi, S. Bolasco (North-Holland, 1989), pp. 7–18

  10. Leurgans S.E., Ross R.T., R.B. Abel: A decomposition for three-way arrays. SIAM J. Matrix Anal. Appl. 14, 1064–1083 (1993)

    Article  Google Scholar 

  11. De Lathauwer L., De Moor B., Vandewalle J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

    Article  Google Scholar 

  12. Zhang T., Golub G.H.: Rank-one approximation to high order tensors. SIAM J. Matrix. Anal. Appl. 23(2), 534–550 (2001)

    Article  Google Scholar 

  13. Kolda T.G., Bader B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2008)

    Article  Google Scholar 

  14. Andersen A.H., Rayens W.S.: Structure-seeking multilinear methods for the analysis of fMRI data. NeuroImage 22, 728–739 (2004)

    Article  Google Scholar 

  15. Andersen C.M., Bro R.: Practical aspects of PARAFAC modeling of fluorescence excitation-emission data. J. Chemom. 17, 200–215 (2003)

    Article  CAS  Google Scholar 

  16. Beckmann C., Smith S.: Tensorial extensions of independent compo nent analysis for multisubject FMRI analysis. NeuroImage 25, 294–311 (2005)

    Article  CAS  Google Scholar 

  17. Beckmann C., Smith S.: Review on multiway analysis in chemistry 2000–2005. Crit. Rev. Anal. Chem. 36, 279–293 (2006)

    Article  Google Scholar 

  18. Comon P.: Independent component analysis, a new concept?. Signal Process. 36, 287–314 (1994)

    Article  Google Scholar 

  19. P. Comon, Tensor decompositions: state of the art and applications, in Mathematics in Signal Processing V, ed. by J.G. McWhirter, I.K. Proudler (Oxford University Press, Oxford, 2001)

  20. R. Coppi, S. Bolasco (eds.), Multiway Data Analysis (North-Holland, Amsterdam, 1989)

  21. De Lathauwer L., De Moor B., Vandewalle J.: Independent component analysis and (simultaneous) third-order tensor diagonalization. IEEE Trans. Signal Process. 49, 2262–2271 (2001)

    Article  Google Scholar 

  22. Kolda T.G.: Orthogonal tensor decompositions. SIAM J. Matrix Anal. Appl. 23, 243–255 (2001)

    Article  Google Scholar 

  23. Kolda T.G.: A counterexample to the possibility of an extension of the Eckart-Young low-rank approximation theorem for the orthogonal rank tensor decomposition. SIAM J. Matrix Anal. Appl. 24, 762–767 (2003)

    Article  Google Scholar 

  24. E. Demiralp, M. Demiralp, Reductive multilinear array decomposition based support functions in enhanced multivariance product representation (EMPR), in Proceedings for the 1st IEEEAM Conference on Applied Computer Science (ACS), 15–17 September 2010 (Malta, 2010), pp. 448–454

  25. M. Demiralp, E. Demiralp, An orthonormal decomposition method for multidimensional matrices, in AIP Proceedings for the International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2009), 18–22 September 2009, vol 1168 (Rethymno, Crete, Greece, 2009) pp. 428–431

  26. Demiralp E.: Applications of high dimensional model representations to computer vision. WSEAS Trans. Math. 8(4), 184–192 (2009)

    Google Scholar 

  27. E. Demiralp, Applications of flexibly initialized high dimensional model representation in computer vision, in Proceedings for the WSEAS International Conference on Simulation, Modelling and Optimization (SMO’09), 3–5 September 2009 (Budapest, Hungary, 2009), pp. 310–315

  28. E. Demiralp, Application of reductive decomposition method for multilinear arrays (RDMMA) to animations, in Proceedings of the 11th WSEAS international conference on Mathematical methods and computational techniques in electrical engineering (MMACTEE’09), pp. 648–656 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Metin Demiralp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demiralp, M., Demiralp, E. A contemporary linear representation theory for ordinary differential equations: multilinear algebra in folded arrays (folarrs) perspective and its use in multidimensional case. J Math Chem 51, 38–57 (2013). https://doi.org/10.1007/s10910-012-0064-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-0064-0

Keywords

Navigation