Skip to main content
Log in

Wavelet method to film-pore diffusion model for methylene blue adsorption onto plant leaf powders

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we have developed an accurate and efficient Haar wavelet method to solve film-pore diffusion model. Film-pore diffusion model is widely used to determine study the kinetics of adsorption systems. To the best of our knowledge, until now rigorous wavelet solution has been not reported for solving film-pore diffusion model. The use of Haar wavelets is found to be accurate, simple, fast, flexible, convenient, and computationally attractive. The power of the manageable method is confirmed. It is shown that film-pore diffusion model satisfactorily describes the kinetics of methylene blue adsorption onto three low-cost adsorbents, Gauva, teak and gulmohar plant leaf powders, used in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

As :

Total surface area of all the particles, m2dm−3

Bt:

Biot number (Btk fdp/Deff), −

Ct :

Bulk concentration at time t, mg dm−3

Cs :

Surface concentration, mg dm−3

Co :

Initial bulk concentration, mg dm−3

dp :

Diameter of particle, m

Deff :

Internal effective diffusivity, m2 s−1

KL :

Langmuir adsorption constant, dm3mg−1

r:

Radial position in the particle, m

R:

Radius of the particle, m

qe :

Solid phase dye concentration at equilibrium, mg g−1

qi :

Solid phase dye concentration at grid i at time t, mg g−1

t:

Time, s or min

V:

Volume of solution, dm3

ε :

Particle porosity, –

ρ p :

Particle density, kg m−3

kf :

External film transfer coefficient, m s−1

References

  1. Ponnusami V., Rajan K.S., Srivastava S.N.: Application of film-pore diffusion model, for methyline blue adsorption onto plant leaf powders. Chem. Eng. J. 163(3), 236–242 (2010)

    Article  CAS  Google Scholar 

  2. Ponnusami V., Gunasekar V., Srivastava S.N.: Kinetics of methylene blue removal from aqueous solution using gulmohar (Delonix regia) plant leaf powder: multivariate regression analysis. J. Hazard. Mater. 169, 119–127 (2009)

    Article  CAS  Google Scholar 

  3. Ponnusami V., Krithika V., Madhuram R., Srivastava S.N.: Biosorption of reactive dye using acid-treated rice husk: factorial design analysis. J. Hazard. Mater. 142, 397–403 (2007)

    Article  CAS  Google Scholar 

  4. Cheung C.W., Chan C.K., Porter J.F., McKay G.: Film-pore diffusion control for the batch sorption of cadmium ions from effluent onto bone char. J. Colloid Interface Sci. 234(2), 328–336 (2001)

    Article  CAS  Google Scholar 

  5. Hameed B.H.: Removal of cationic dye from aqueous solution using jackfruit peel as non-conventional low-cost adsorbent. J. Hazard. Mater. 162(1), 344–350 (2009)

    Article  CAS  Google Scholar 

  6. Hameed B.H., Krishni R.R., Sata S.A.: A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions. J. Hazard. Mater. 162(1), 305–311 (2009)

    Article  CAS  Google Scholar 

  7. Gupta N., Kushwaha A.K., Chattopadhyaya M.C.: Adsorption studies of cationic dyes onto Ashoka (Saraca asoca) leaf powder. J. Taiwan Inst. Chem. Eng. 43(4), 604–613 (2012)

    Article  CAS  Google Scholar 

  8. Hameed B.H., Mahmoud D.K., Ahmad A.L.: Sorption of basic dye from aqueous solution by pomelo (Citrus grandis) peel in a batch system. Colloids Surf. A Physicochem. Eng. Aspects 316(1–3), 78–84 (2008)

    Article  CAS  Google Scholar 

  9. Çelekli A., Ilgün G., Bozkurt H.: Sorption equilibrium, kinetic, thermodynamic, and desorption studies of reactive red 120 on Chara contraria. Chem. Eng. J. 191, 228–235 (2012)

    Article  Google Scholar 

  10. S. Kumar, V. Gunasekar, V. Ponnusami, Removal of methylene blue from aqueous effluent using fixed bed of groundnut shell powder. J. Chem. (in press). doi:10.1155/2013/259819

  11. B.H. Hameed, M.I. El-Khaiary, Sorption kinetics and isotherm studies of a cationic dye using agricultural waste: broad bean peels. J. Hazard. Mater. 154(1–3)15, 639–648 (2008)

    Google Scholar 

  12. Chen C.F., Hsiao C.H.: Haar wavelet method for solving lumped and distributed-parameter systems. IEEE Proc. Pt. D 144(1), 87–94 (1997)

    Google Scholar 

  13. C.H. Hsiao, State analysis of linear time delayed systems via Haar wavelets. Math. Comput. Simul. 44(5) 457–470 (1997)

    Google Scholar 

  14. Z. Shi, T. Liu, B. Gao, International Conference on Computer Application and System Modeling (ICCASM 2010), IEEE Proceeding. Haar wavelet method for solving wave equation (2010)

  15. Fazal-I-Haq, , Aziz I., Aziz I.: A Haar wavelets based numerical method for eight-order boundary problems. Int. J. Math. Comput. Sci. 6(1), 25–31 (2010)

    Google Scholar 

  16. Wu J.L: A wavelet operational method for solving fractional partial differential equations numerically. Appl. Math. Comput. 214(1), 31–40 (2009)

    Article  Google Scholar 

  17. Z. Shi, Y.-Y. Cao, Q. -J. Chen, Solving 2D and 3D Poisson equations and biharmonic equations by the Haar wavelet method. Appl. Math. Model. 36(11), 5143–5161 (2012)

    Google Scholar 

  18. W. Geng, Y. Chen, Y. Li, D. Wang, Wavelet method for nonlinear partial differential equations of fractional order, Comput. Inf. Sci. 4(5) 28–35 (2011)

    Google Scholar 

  19. Lepik U.: Numerical solution of evolution equations by the Haar wavelet method. Appl. Math. Comput. 185, 695–704 (2007)

    Article  Google Scholar 

  20. Lepik U.: Numerical solution of differential equations using Haar wavelets. Math. Comput. Simul. 68, 127–143 (2005)

    Article  Google Scholar 

  21. U. Lepik, Application of the Haar wavelet transform to solving integral and differential equations, Proc. Estonian Acad. Sci. Phys. Math. 56(1), 28–46 (2007)

  22. G. Hariharan, K. Kannan, Haar wavelet method for solving some nonlinear parabolic equations. J. Math. Chem. 48(4), 1044–1061 (2010)

    Google Scholar 

  23. G. Hariharan, K. Kannan, A comparative study of a Haar Wavelet method and a restrictive Taylor’s series method for solving convection-diffusion equations. Int. J. Comput. Methods Eng. Sci. Mech. 11(4), 173–184 (2010)

    Google Scholar 

  24. Hariharan G.: Haar wavelet method for solving Sine-Gordon and Klein-Gordon equations. Int. J. Nonlinear Sci. 9(2), 1–10 (2010)

    Google Scholar 

  25. Hariharan G., Kannan K.: Haar wavelet method for solving fitz Hugh-Nagumo equation. Int. J. Math. Stat. Sci. 2, 2 (2010)

    Google Scholar 

  26. Porter D.C.K., McKay G.: Film-pore diffusion model for the fixed-bed sorption of copper and cadmium ions onto bone char. Water Res. 35, 3876–3886 (2001)

    Article  Google Scholar 

  27. Ho Y.S., McKay G.: A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf. Environ. Prot. 76(B4), 332–340 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Hariharan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hariharan, G., Ponnusami, V. & Srikanth, R. Wavelet method to film-pore diffusion model for methylene blue adsorption onto plant leaf powders. J Math Chem 50, 2775–2785 (2012). https://doi.org/10.1007/s10910-012-0063-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-0063-1

Keywords

Navigation