Skip to main content
Log in

A benchmark calculation for the fuzzy c-means clustering algorithm: initial memberships

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We report a benchmark calculation for the fuzzy c-means clustering algorithm that can be used as a reference in theoretical and practical studies related to classification methodologies. A full exploration of the hard-initialization space is done for all possible different groupings on a simple fifteen-pattern system to describe their stationary points. Numerical problems associated with the stopping criteria are discussed in relation with the calculation of some validity indexes. All necessary information to assure an easy reproduction of the obtained results is clearly reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderberg M.R.: Cluster Analysis for Application. Academic Press, NewYork (1973)

    Google Scholar 

  2. Devijver P.A., Kittler J.: Pattern Recognition: A Statistical Approach. Prentice-Hall, London (1982)

    Google Scholar 

  3. Bezdek J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    Book  Google Scholar 

  4. J.C. Bezdek, R.J. Hathaway, M.J. Sabin, et al. Convergence theory for fuzzy c-means: counter- examples and repairs. IEEE Trans. Syst., Man Cybernet. SMC17, 873–877 (1987)

    Google Scholar 

  5. Redmond S.J., Heneghan C.: A method for initialising the K-means clustering algorithm using kd-trees. Pattern Recognit. Lett. 28, 965–973 (2007)

    Article  Google Scholar 

  6. Khan S.S., Ahmad A.: Cluster center initialization algorithm for K-means clustering. Pattern Recognit. Lett. 25, 1293–1302 (2004)

    Article  Google Scholar 

  7. P.S. Bradley, U.M. Fayyad, in Refining Initial Points for K-Means Clustering. Proceedings of the Fifteenth International Conference on Machine Learning. pp. 91–99 (1998)

  8. Cao F., Liang J., Jiang G.: An initialization method for the K-means algorithm using neighbourhood model. Comput. Math. Appl. 58, 474–483 (2009)

    Article  Google Scholar 

  9. Cao F., Liang J., Bai L.: A new initialization method for categorical data clustering. Expert Syst. Appl. 36, 10223–10228 (2009)

    Article  Google Scholar 

  10. E. Rasmussen, in Clustering Algorithms, Information Retrieval Data Structures and Algorithms, ed. by Frakes (Prentice Hall, New Jersey, 1992), pp. 419–442

  11. Kaufman L., Rousseeuw P.: Finding Groups in Data. Wiley, New York (1989)

    Google Scholar 

  12. Duda R.O., Hart P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)

    Google Scholar 

  13. Feher M., Schmidt J.M.: Fuzzy clustering as a means of selecting representative conformers and molecular alignments. J. Chem. Inf. Comput. Sci. 43(3), 810–818 (2003)

    Article  CAS  Google Scholar 

  14. Gordon H.L., Somorjai R.L.: Fuzzy cluster analysis of molecular dynamics trajectories. Proteins 14(2), 249–264 (1992)

    Article  CAS  Google Scholar 

  15. Doman T.N., Cibulskis J.M., Cibulskis M.J., McCray P.D., Spangler D.P.: Algorithm5: A technique for fuzzy similarity clustering of chemical inventories. J. Chem. Inf. Comput. Sci. 36, 1195–1204 (1996)

    Article  CAS  Google Scholar 

  16. Rassokhin D.N., Lobanov V.S., Agrafiotis D.K.: Nonlinear mapping of massive data sets by fuzzy clustering and neural networks. J. Comput. Chem. 22(4), 373–386 (2001)

    Article  CAS  Google Scholar 

  17. Lin TH., Wang GM., Hsu YH.: Classification of some active HIV-1 protease inhibitors and their inactive analogues using some uncorrelated three-dimensional molecular descriptors and a fuzzy c-means algorithm. J. Chem. Inf. Comput. Sci. 42(6), 1490–1504 (2002)

    Article  CAS  Google Scholar 

  18. Banerjee A., Misra M., Pai D., Shih O.LY., Woodley R., Lu XJ., Srinivasan A.R., Olson W.K., Dave R.N., Venanzi C.A.: Feature extraction using molecular planes for fuzzy relational clustering of a flexible dopamine reuptake inhibitor. J. Chem. Inf. Model. 47, 2216–2227 (2007)

    Article  CAS  Google Scholar 

  19. Li X., Lu X., Tian J., Gao P., Kong H., Xu G.: Application of fuzzy c-means clustering in data analysis of metabolomics. Anal. Chem. 81(11), 4468–4475 (2009)

    Article  CAS  Google Scholar 

  20. J.C. Bezdek, Fuzzy Mathematics in Pattern Classification Ph.D. Dissertation, IEEE Trans. Cornell University, Ithaca, 1973

  21. Bezdek J.C.: Cluster validity with fuzzy sets. J. Cybernet. 3, 58–73 (1974)

    Google Scholar 

  22. Bezdek J.C.: Numerical taxonomy with fuzzy sets. J. Math. Biol. 1, 57–71 (1974)

    Article  Google Scholar 

  23. Bezdek J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, NewYork (1981)

    Book  Google Scholar 

  24. Bezdek J.C.: Pattern Recognition in Handbook of Fuzzy Computation. IOP Publishing Ltd., Boston (1998)

    Google Scholar 

  25. Dave R.N., Bhaswan K.: Adaptive fuzzy c-shells clustering and detection of ellipses. IEEE Trans. Neural Netw. 3(5), 643–662 (1992)

    Article  CAS  Google Scholar 

  26. Krishnapuram R., Nasraoui O., Keller J.: The fuzzy c spherical shells algorithm: a new approach, IEEE Trans. Neural Netw. 3(5), 663–671 (1992)

    Article  CAS  Google Scholar 

  27. Man Y., Gath I.: Detection and separation of ring-shaped clusters using fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 16(8), 55–861 (1994)

    Article  Google Scholar 

  28. Hathaway R.J., Bezdek J.C.: Optimization of clustering criteria by reformulation, IEEE Trans. Fuzzy Syst. 3(2), 241–245 (1995)

    Article  Google Scholar 

  29. Wei W., Mendel J.M.: Optimality test for the fuzzy c-means algorithm. Pattern Recognit. 27(11), 1567–1573 (1994)

    Article  Google Scholar 

  30. Yu J., Yang M.S.: Optimality test for generalized FCM and its application to parameter selection, IEEE Trans. Fuzzy Syst. 13(1), 164–176 (2005)

    Article  Google Scholar 

  31. Xie X.L., Beni G.: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 13, 841–847 (1991)

    Article  Google Scholar 

  32. Y. Fukuyama, M. Sugeno, A new method of choosing the number of clusters for the fuzzy c-means method, Proc. Fifth Fuzzy Systems Symp., pp. 247–250 (1989)

  33. Cao F., Liang J., Jiang G.: An initialization method for the K-Means algorithm usingneighborhood model. Proc. Comput. Math. Appl. 58, 474–483 (2009)

    Article  Google Scholar 

  34. Redmond S.J., Heneghan C.: A method for initialising the K-means clustering algorithm using kd-trees. Pattern Recognit. Lett. 28, 965–973 (2007)

    Article  Google Scholar 

  35. Khan S.S., Ahmad A.: Cluster center initialization algorithm for K-means clustering. Pattern Recognit. Lett. 25, 1293–1302 (2004)

    Article  Google Scholar 

  36. Peña J.M., Lozano J.A., Larrañaga P.: An empirical comparison of four initialization methods for the K-means algorithm. Pattern Recognit. Lett. 25, 1027–1040 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Rubio-Martinez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez, A., Tomas, M.S. & Rubio-Martinez, J. A benchmark calculation for the fuzzy c-means clustering algorithm: initial memberships. J Math Chem 50, 2703–2715 (2012). https://doi.org/10.1007/s10910-012-0059-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-0059-x

Keywords

Navigation