Skip to main content

Scaling laws in simple and complex proteins: size scaling effects associated with domain number and folding class

Abstract

The native states of the most compact globular proteins have been described as being in the so-called “collapsed-polymer regime,” characterized by the scaling law R g ~ n ν, where R g is radius of gyration, n is the number of residues, and ν ≈ 1/3. However, the diversity of folds and the plasticity of native states suggest that this law may not be universal. In this work, we study the scaling regimes of: (i) one to four-domain protein chains, and (ii) their constituent domains, in terms of the four major folding classes. In the case of complete chains, we show that size scaling is influenced by the number of domains. For the set of domains belonging to the all-α, all-β, α/β, and α + β folding classes, we find that size-scaling exponents vary between 0.3 ≤ ν ≤ 0.4. Interestingly, even domains in the same folding class show scaling regimes that are sensitive to domain provenance, i.e., the number of domains present in the original intact chain. We demonstrate that the level of compactness, as measured by monomer density, decreases when domains originate from increasingly complex proteins.

This is a preview of subscription content, access via your institution.

References

  1. 1

    de Gennes P.-G.: Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca (1985)

    Google Scholar 

  2. 2

    LeGuillou J.-C., Zinn-Justin J.: Phys. Rev. B 21, 3976 (1980)

    Article  CAS  Google Scholar 

  3. 3

    LeGuillou J.-C., Zinn-Justin J.: J. Phys. (France) 50, 1365 (1989)

    Article  Google Scholar 

  4. 4

    Arteca G.A.: Phys. Rev. E 49, 2417 (1994)

    Article  CAS  Google Scholar 

  5. 5

    Arteca G.A.: Phys. Rev. E 51, 2600 (1995)

    Article  CAS  Google Scholar 

  6. 6

    Arteca G.A.: Phys. Rev. E 54, 3044 (1996)

    Article  CAS  Google Scholar 

  7. 7

    Lindberg M.O., Oliveberg M.: Curr. Opin. Struct. Biol. 17, 21 (2007)

    Article  CAS  Google Scholar 

  8. 8

    Englander S.W., Mayne L., Krishna M.M.: Q. Rev. Biophys. 40, 287 (2007)

    Article  CAS  Google Scholar 

  9. 9

    Wright C.F., Teichmann S.A., Clarke J., Dobson C.M.: Nature 438, 878 (2005)

    Article  CAS  Google Scholar 

  10. 10

    Hartl F.U., Hayer-Hartl M.: Nat. Struct. Mol. Biol. 16, 574 (2009)

    Article  CAS  Google Scholar 

  11. 11

    Murzin A.G., Brenner S.E., Hubbard T., Chothia C.: J. Mol. Biol. 247, 536 (1995)

    CAS  Google Scholar 

  12. 12

    Andreeva A., Howorth D., Brenner S.E., Hubbard T., Chothia C., Murzin A.G.: Nucl. Acid Res. 32, D226 (2004)

    Article  CAS  Google Scholar 

  13. 13

    Andreeva A., Howorth D., Chandonia J.M., Brenner S.E., Hubbard T., Chothia C., Murzin A.G.: Nucl. Acid Res. 36, D419 (2008)

    Article  CAS  Google Scholar 

  14. 14

    Heger A., Holm L.: J. Mol. Biol. 328, 749 (2003)

    Article  CAS  Google Scholar 

  15. 15

    Bernstein F.C., Koetzle T.F., Williams G.J.B., Meyer E.F. Jr., Brice M.D., Rodgers J.R., Kennard O., Shimanouchi T., Tasumi M.: J. Mol. Biol. 112, 535 (1977)

    Article  CAS  Google Scholar 

  16. 16

    Berman H.M., Henrick K., Nakamura H.: Nat. Struct. Biol. 10, 980 (2003)

    Article  CAS  Google Scholar 

  17. 17

    Rogerson P., Arteca G.A.: J. Math. Chem. 49, 1493 (2011)

    Article  CAS  Google Scholar 

  18. 18

    Holm L., Sander C.: Proteins 33, 88 (1998)

    Article  CAS  Google Scholar 

  19. 19

    Lesk A.M.: Introduction to Protein Architecture. Oxford University Press, Oxford (2001)

    Google Scholar 

  20. 20

    Petsko G.A., Ringe D.: Protein Structure and Function. New Science Press, London (2004)

    Google Scholar 

  21. 21

    Ponting C.P., Russell R.R.: Annu. Rev. Biophys. Biomol. Struct. 31, 45 (2002)

    Article  CAS  Google Scholar 

  22. 22

    Wodak S.J., Janin J.: Biochemistry 20, 6544 (1981)

    Article  CAS  Google Scholar 

  23. 23

    Swindells M.B.: Protein Sci. 4, 103 (1995)

    Article  CAS  Google Scholar 

  24. 24

    Zehfus M.H.: Protein Sci. 6, 1210 (1997)

    Article  CAS  Google Scholar 

  25. 25

    Tsai C.J., Nussinov R.: Protein Sci. 6, 24 (1997)

    Article  CAS  Google Scholar 

  26. 26

    Dumontier M., Yao R., Feldman H.J., Hogue C.W.: J. Mol. Biol. 350, 1061 (2005)

    Article  CAS  Google Scholar 

  27. 27

    Wyrwicz L.S., Koczyk G., Rychlewski L., Plewczynski D.: J. Phys. Condens. Matter 19, 285222 (2007)

    Article  Google Scholar 

  28. 28

    Rogerson P., Arteca G.A.: J. Math. Chem. 50, 169 (2012)

    Article  CAS  Google Scholar 

  29. 29

    de Leeuw M., Reuveni S., Klafter J., Granek R.: PLoS ONE 4, e7296 (2009)

    Article  Google Scholar 

  30. 30

    Zbilut J.P., Chua G.H., Krishnan A., Bossa C., Rother K., Webber C.L., Giuliani A.: Proteins 66, 621 (2007)

    Article  CAS  Google Scholar 

  31. 31

    Szilágyi A.: Proteins 71, 2086 (2008)

    Article  Google Scholar 

  32. 32

    Shen M.Y., Davis F.P., Sali A.: Chem. Phys. Lett. 405, 224 (2005)

    Article  CAS  Google Scholar 

  33. 33

    Baker D.: Nature 405, 39 (2000)

    Article  CAS  Google Scholar 

  34. 34

    Bloom J.D., Drummond D.A., Arnold F.H., Wilke C.: Mol. Biol. E 23, 1751 (2006)

    Article  CAS  Google Scholar 

  35. 35

    Begum T., Ghosh T.C.: J. Mol. Evol. 71, 60 (2010)

    Article  CAS  Google Scholar 

  36. 36

    Chothia C., Levitt M., Richardson D.: Proc. Natl. Acad. Sci. USA 74, 4130 (1977)

    Article  CAS  Google Scholar 

  37. 37

    Netzer W.J., Hartl F.U.: Nature 388, 343 (1997)

    Article  CAS  Google Scholar 

  38. 38

    Liu J., Rost B.: Proteins 55, 678 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gustavo A. Arteca.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rogerson, P., Arteca, G.A. Scaling laws in simple and complex proteins: size scaling effects associated with domain number and folding class. J Math Chem 50, 1901–1919 (2012). https://doi.org/10.1007/s10910-012-0010-1

Download citation

Keywords

  • Polymer size
  • Protein folds
  • Folding families
  • Protein domains
  • SCOP database