Skip to main content
Log in

D-MORPH regression for modeling with fewer unknown parameters than observation data

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

D-MORPH regression is a procedure for the treatment of a model prescribed as a linear superposition of basis functions with less observation data than the number of expansion parameters. In this case, there is an infinite number of solutions exactly fitting the data. D-MORPH regression provides a practical systematic means to search over the solutions seeking one with desired ancillary properties while preserving fitting accuracy. This paper extends D-MORPH regression to consider the common case where there is more observation data than unknown parameters. This situation is treated by utilizing a proper subset of the normal equation of least-squares regression to judiciously reduce the number of linear algebraic equations to be less than the number of unknown parameters, thereby permitting application of D-MORPH regression. As a result, no restrictions are placed on model complexity, and the model with the best prediction accuracy can be automatically and efficiently identified. Ignition data for a H 2/air combustion model as well as laboratory data for quantum-control-mechanism identification are used to illustrate the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bishop C.M.: Pattern Recognition and Machine Learning. Springer, New York, NY (2007)

    Google Scholar 

  2. Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York, NY (2001)

    Google Scholar 

  3. Tikhonov A.N.: Dokl. Akad. Nauk. SSSR 39, 195–198 (1943)

    Google Scholar 

  4. A.N. Tikhonov, Soviet Math. Dokl. 4, 1035–1038 (1963). English translation of Dokl. Akad. Nauk. SSSR 151, 501–504 (1963)

  5. A.N. Tikhonov, V.A. Arsenin, Solution of Ill-Posed Problems. (Winston & Sons, Washington, 1977). ISBN 0-470-99124-0

  6. Hansen P.C.: Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia, PA (1998)

    Book  Google Scholar 

  7. Hoerl A.E.: Chem. Eng. Prog. 58, 54–59 (1962)

    Google Scholar 

  8. Hoerl A.E., Kennard R.: Technometrics 12, 55–67 (1970)

    Google Scholar 

  9. Wahba G.: Spline models for observational data. SIAM, Philadelphia, PA (1990)

    Book  Google Scholar 

  10. Wahba G.: Ann. Stat. 13, 1378–1402 (1985)

    Article  Google Scholar 

  11. Wahba G., Wang Y.D., Gu C., Klein R., Klein B.: Ann. Stat. 23, 1865–1895 (1995)

    Article  Google Scholar 

  12. Categories: linear algebra—estimation theory views, http://en.wikipedia.org/wiki/Tikhonov_regularization

  13. Li G., Rabitz H.: J. Math. Chem. 48(4), 1010–1035 (2010)

    Article  CAS  Google Scholar 

  14. N. Danielson, V. Beltrani, J. Dominy, H. Rabitz, Manuscript in preparation

  15. Rothman A., Ho T.-S., Rabitz H.: Phys. Rev. A 72, 023416 (2005)

    Article  Google Scholar 

  16. Rothman A., Ho T.-S., Rabitz H.: J. Chem. Phys. 123, 134104 (2005)

    Article  Google Scholar 

  17. Rothman A., Ho T.-S., Rabitz H.: Phys. Rev. A 73, 053401 (2006)

    Article  Google Scholar 

  18. Rao C.R., Mitra S.K.: Generalized Inverse of Matrix and Its Applications. Willey, New York, NY (1971)

    Google Scholar 

  19. Bellman R.: Introduction to Matrix Analysis, pp. 118. McGraw-hill Book Co., New York, NY (1970)

    Google Scholar 

  20. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical Recipes in FORTRAN—The Art of Science Computing, pp. 51. Cambridge university press, New York, NY (1992)

    Google Scholar 

  21. Li J., Zhao Z.W., Kazakov A., Dryer F.L.: Int. J. Chem. Kinet. 36, 566–575 (2004)

    Article  CAS  Google Scholar 

  22. Matlab [7.0R14], MathWorks, Inc. (2004)

  23. Mitra A., Rabitz H.: Phys. Rev. A 67(3), 33407 (2003)

    Article  Google Scholar 

  24. Rey-de-Castro R., Rabitz H.: Phys. Rev. A 81, 063422 (2010)

    Article  Google Scholar 

  25. R. Rey-de-Castro, Z. Leghtas, H. Rabitz, Phys. Rev. Lett. (submitted)

  26. Brif C., Chakrabarti R., Rabitz H.: New J. Phys. 12, 075008 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genyuan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Rey-de-Castro, R. & Rabitz, H. D-MORPH regression for modeling with fewer unknown parameters than observation data. J Math Chem 50, 1747–1764 (2012). https://doi.org/10.1007/s10910-012-0004-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-0004-z

Keywords

Navigation