Skip to main content
Log in

Phase fitted symplectic partitioned Runge–Kutta methods for the numerical integration of the Schrödinger equation

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this work we consider explicit symplectic partitioned Runge–Kutta methods with five stages for problems with separable Hamiltonian. We construct three new methods, one with constant coefficients of eight phase-lag order and two phase-fitted methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abia L., Sanz-Serna J.M.: Partitioned Runge–Kutta methods for separable Hamiltonian problems. Math. Comput. 60, 617–634 (1993)

    Article  Google Scholar 

  2. Anastassi Z.A., Simos T.E.: An optimized Runge–Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175, 1–9 (2005)

    Article  Google Scholar 

  3. Brusa L., Nigro L.: A one-step method for direct integration of structural dynamic equations. Int. J. Numer. Methods Eng. 14, 685–699 (1980)

    Article  Google Scholar 

  4. Hairer E., Lubich Ch., Wanner G.: Geometric Numerical Integration. Springer, Berlin (2002)

    Google Scholar 

  5. Kalogiratou Z., Monovasilis Th., Simos T.E.: Symplectic integrators for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158, 83–92 (2003)

    Article  Google Scholar 

  6. Kalogiratou Z., Simos T.E.: Newton-Cotes formulae for long-time integration. J. Comput. Appl. Math. 158, 75–82 (2003)

    Article  Google Scholar 

  7. Konguetsof A., Simos T.E.: A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158, 93–106 (2003)

    Article  Google Scholar 

  8. McLachlan R.I.: On the numerical integration of ordinary differential equations by symmetric composition methods. SIAM J. Sci. Comput. 16, 151–168 (1995)

    Article  Google Scholar 

  9. Monovasilis Th., Simos T.E.: Symplectic methods for the numerical of the Schrödinger equation. Comput. Mater. Sci. 38, 526–532 (2007)

    Article  CAS  Google Scholar 

  10. Psihoyios G., Simos T.E.: Trigonometrically fitted predictor-corrector methods for IVPs with oscillating solutions. J. Comput. Appl. Math. 158, 135–144 (2003)

    Article  Google Scholar 

  11. Psihoyios G., Simos T.E.: A fourth algebraic order trigonometrically fitted predictor-corrector scheme for IVPs with oscillating solutions. J. Comput. Appl. Math. 175, 137–147 (2005)

    Article  Google Scholar 

  12. Raptis A.D., Simos T.E.: A four step phase-fitted method for the numerical integration of second order initial-value problems. BIT 31, 160–168 (1991)

    Article  Google Scholar 

  13. Simos T.E.: A fourth algebraic order exponentially-fitted Runge–Kutta method for the numerical solution of the Schrödinger equation. IMA J. Numer. Anal. 21(4), 919–931 (2001)

    Article  Google Scholar 

  14. Sakas D., Simos T.E.: Multiderivative methods of eighth algrebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation. J. Comput. Appl. Math. 175, 161–172 (2005)

    Article  Google Scholar 

  15. Sanz-Serna J.M., Calvo M.P.: Numerical Hamiltonian Problem. Chapman and Hall, London (1994)

    Google Scholar 

  16. Simos T.E.: Exponentially-fitted Runge–Kutta–Nystrom method for the numerical solution of initial-value problems with oscillating solutions. Appl. Math. Lett. 15(2), 217–225 (2002)

    Article  Google Scholar 

  17. Simos T.E., Famelis I.T., Tsitouras Ch.: Zero dissipative, explicit Numerov-type methods for second order IVPs with oscillating solutions. Numer. Algorithms 34, 27–40 (2003)

    Article  Google Scholar 

  18. Simos T.E.: Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution. Appl. Math. Lett. 17(5), 601–607 (2004)

    Article  Google Scholar 

  19. Simos T.E.: Closed Newton–Cotes trigonometrically-fitted formulae of high order for long-time integration of orbital problems. Appl. Math. Lett. 22(10), 1616–1621 (2009)

    Article  Google Scholar 

  20. Simos T.E.: Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation. Applicandae Mathematicae 110(3), 1331–1352 (2010)

    Article  Google Scholar 

  21. Stavroyiannis S., Simos T.E.: Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs. Appl. Numer. Math. 59(10), 2467–2474 (2009)

    Article  Google Scholar 

  22. Tsitouras Ch., Simos T.E.: Optimized Runge–Kutta pairs for problems with oscillating solutions. J. Comput. Appl. Math. 147(2), 397–409 (2002)

    Article  Google Scholar 

  23. Tselios K., Simos T.E.: Runge–Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. J. Comput. Appl. Math. 175, 173–181 (2005)

    Article  Google Scholar 

  24. Van Der Houwen P.J., Sommeijer B.P.: Explicit Runge–Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions. SIAM J. Numer. Anal. 24, 595–617 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Th. Monovasilis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monovasilis, T. Phase fitted symplectic partitioned Runge–Kutta methods for the numerical integration of the Schrödinger equation. J Math Chem 50, 1736–1746 (2012). https://doi.org/10.1007/s10910-012-0003-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-0003-0

Keywords

Navigation