Skip to main content
Log in

Oscillations in non-mass action kinetics models of biochemical reaction networks arising from pairs of subnetworks

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

It is well known that oscillations in models of biochemical reaction networks can arise as a result of a single negative cycle. On the other hand, methods for finding general network conditions for potential oscillations in large biochemical reaction networks containing many cycles are not well developed. A biochemical reaction network with any number of species is represented by a simple digraph and is modeled by an ordinary differential equation (ODE) system with non-mass action kinetics. The obtained graph-theoretic condition generalizes the negative cycle condition for oscillations in ODE models to the existence of a pair of subnetworks, where each subnetwork contains an even number of positive cycles. The technique is illustrated with a model of genetic regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Clarke B.L.: Stability of complex reaction networks. Adv. Chem. Phys. 43, 1–215 (1980)

    Article  CAS  Google Scholar 

  2. Clarke B.L.: Stoichiometric network analysis. Cell Biophys. 12, 237–253 (1988)

    CAS  Google Scholar 

  3. Craciun G., Feinberg M.: Multiple equilibria in complex chemical reaction networks: I. The injectivity property. SIAM J. Appl. Math. 65, 1526–1546 (2005)

    Article  CAS  Google Scholar 

  4. Craciun G., Feinberg M.: Multiple equilibria in complex chemical reaction networks: II. The species-reactions graph. SIAM J. Appl. Math. 66, 1321–1338 (2006)

    Article  CAS  Google Scholar 

  5. de Silva E., Stumpf M.P.H.: Complex networks and simple models in biology. J. R. Soc. Interface 2, 419–430 (2005)

    Article  Google Scholar 

  6. Fallat S.: Bidiagonal factorizations of totally nonnegative matrices. Am. Math. Mon. 108, 697–712 (2001)

    Article  Google Scholar 

  7. Feinberg M.: Complex balancing in general kinetic systems. Arch. Ration. Mech. Anal. 49, 187–194 (1972)

    Article  Google Scholar 

  8. Forger D., Peskin C.: A detailed predictive model of the mammalian circadian clock. Proc. Natl. Acad. Sci. 100, 14806–14811 (2003)

    Article  CAS  Google Scholar 

  9. Gantmakher F.R.: Applications of the Theory of Matrices. Interscience, New York (1959)

    Google Scholar 

  10. Gatermann K.: Counting stable solutions of sparse polynomial systems in chemistry. Contemp. Math. 286, 53–69 (2001)

    Article  Google Scholar 

  11. Goldbeter A.: A model for circadian oscillations in the Drosophila period protein (PER). Proc. R. Soc. Lond. B Biol. Sci. 261, 319–324 (1995)

    Article  CAS  Google Scholar 

  12. Goldbeter A.: Biochemical Oscillations and Cellular Rhythms: The Molecular Basis of Periodic and Chaotic Behaviour. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  13. Goodman B.: Oscillatory behavior in enzymatic control processes. Adv. Enzym. Regul. 3, 425–439 (1965)

    Article  Google Scholar 

  14. Griffith J.: Mathematics of cellular control processes. I. Negative feedback to gene. J. Theor. Biol. 20, 202–208 (1968)

    Article  CAS  Google Scholar 

  15. Harary F.: Graph Theory. Addison-Wesley, Reading (1968)

    Google Scholar 

  16. Hartwel L., Hopfield J., Leibler S., Murray A.: From molecular to modular cell biology. Nature 402, C47–C52 (1999)

    Article  Google Scholar 

  17. Jacob F., Monod J.: Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356 (1961)

    Article  CAS  Google Scholar 

  18. Keener J., Sneyd J.: Mathematical Physiology. Springer, New York (1998)

    Google Scholar 

  19. Kitano H.: Systems biology: a brief overview. Science 295, 1662–1664 (2002)

    Article  CAS  Google Scholar 

  20. Kuznetsov Y.A.: Elements of Applied Bifurcation Theory, 2nd edn. Springer, New York (1998)

    Google Scholar 

  21. Lancaster P., Tismenetsky M.: The Theory of Matrices. Academic Press, Orlando (1985)

    Google Scholar 

  22. Liu W.M.: Criterion of Hopf bifurcations without using eigenvalues. J. Math. Anal. Appl. 182, 250–256 (1994)

    Article  Google Scholar 

  23. Mahaffy J.: Genetic control models with diffusion and delays. Math. Biosci. 90, 519–533 (1988)

    Article  Google Scholar 

  24. Mahaffy J., Pao C.V.: Models of genetic control with time delays and spatial effects. J. Math. Biol. 20, 39–57 (1984)

    Article  CAS  Google Scholar 

  25. Maybee J., Olesky D., van den Driessche P., Wiener G.: Matrices, digraphs and determinants. SIAM J. Matrix Anal. Appl. 10, 500–519 (1989)

    Article  Google Scholar 

  26. Milo R., Shen-Orr S., Itzkovitz S., Kashtan N., Chklovskii D., Alon U.: Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002)

    Article  CAS  Google Scholar 

  27. Mincheva M.: Graph-theoretic condition for oscillations arising from pairs of subnetworks. Bull. Math. Biol 73, 2277–2304 (2011)

    Article  CAS  Google Scholar 

  28. Mincheva M., Craciun G.: Multigraph conditions for multistability, oscillations and pattern formation in biochemical reaction networks. Proc. IEEE 96, 1281–1291 (2008)

    Article  Google Scholar 

  29. Mincheva M., Roussel M.R.: Graph-theoretic methods for the analysis of chemical and biochemical networks. I. Multistability and oscillations in ordinary differential equation models. J. Math. Biol. 55, 61–86 (2007)

    Article  Google Scholar 

  30. Mincheva M., Roussel M.R.: A graph-theoretic method for detecting potential Turing bifurcations. J. Chem. Phys. 125, 204102 (2006)

    Article  Google Scholar 

  31. Murray J.D.: Mathematical Biology. 2nd edn. Springer, New York (1993)

    Book  Google Scholar 

  32. Prigogine I., Lefever R.: Symmetry breaking instabilities in dissipative systems. II. J. Chem. Phys. 48, 1695–1703 (1968)

    Article  Google Scholar 

  33. Saithong T., Painter K., Millar A.: The contributions of interlocking loops and extensive nonlinearity to the properties of the circadian clocks models. PLOS One 5, e13867 (2010)

    Article  CAS  Google Scholar 

  34. Smolen P., Baxter D.A., Byrne J.H.: Modeling transcriptional control in gene networks—methods, recent results, and future directions. Bull. Math. Biol. 62, 247–292 (2000)

    Article  CAS  Google Scholar 

  35. Strumfels B., Myers M., Guckenheimer J.: Computing Hopf bifurcations. SIAM J Numer. Analy. 34, 1–21 (1997)

    Article  Google Scholar 

  36. Thomas R., Thieffry D., Kaufman M.: Dynamical behaviour of biological regulatory networks. Bull. Math. Biol. 57, 247–276 (1995)

    CAS  Google Scholar 

  37. Tyson J.J.: Classification of instabilities in chemical reaction systems. J. Chem. Phys. 62, 1010–1015 (1975)

    Article  CAS  Google Scholar 

  38. Tyson J.J.: Modeling the cell division cycle: cdc2 and cyclin interactions. Proc. Natl. Acad. Sci. 88, 7328–7332 (1991)

    Article  CAS  Google Scholar 

  39. Tyson J.J., Chen K.C., Novak B.: Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15, 221–231 (2003)

    Article  CAS  Google Scholar 

  40. A. Volpert, A. Ivanova, in Mathematical Modeling (Russian), (Nauka, Moscow, 1987), pp. 57–102

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maya Mincheva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mincheva, M. Oscillations in non-mass action kinetics models of biochemical reaction networks arising from pairs of subnetworks. J Math Chem 50, 1111–1125 (2012). https://doi.org/10.1007/s10910-011-9955-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-011-9955-8

Keywords

Navigation