Skip to main content
Log in

Automatic simulation of electrochemical transients by the adaptive Huber method for Volterra integral equations involving Kernel terms exp[−α(tτ)]erex{[β(tτ)]1/2} and exp[−α(tτ)]daw {[β(tτ)]1/2}

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Development of fully automatic methods for the simulation of transient experiments in electroanalytical chemistry is a desirable element of the contemporary trends of laboratory automation in electrochemistry. In accord with this idea, the adaptive Huber method, elaborated by the present author, is intended to solve automatically integral equations of Volterra type, encountered in the theory of controlled-potential transients. The coefficients of the method have been recently obtained for integral transformation kernels involving terms K(t, τ) = exp[−α(tτ)]erex{[β(tτ)]1/2} and K(t, τ) = exp[−α(tτ)]daw{[β(tτ)]1/2} with α ≥ 0 and β ≥ 0, which are known to occur in the above integral equations. In this work the validity of the resulting method, for electrochemical simulations, is examined using representative examples of electroanalytical models involving integral equations with various special cases of such kernel terms. The performance of the method is found similar to that previously reported for integral equations involving exclusively kernels K(t, τ) = 1, K(t, τ) = (tτ)−1/2, and K(t, τ) = exp[−λ (tτ)](tτ)−1/2 with λ > 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.K. Bieniasz, in Modern Aspects of Electrochemistry, vol. 35, ed. by B.E. Conway, R.E. White (Kluwer/Plenum, New York, 2002), p. 135

  2. Britz D.: Digital Simulation in Electrochemistry. Springer, Berlin (2005)

    Book  Google Scholar 

  3. E. Gallopoulos, E. Houstis, J.R. Rice, Future Research Directions in Problem Solving Environments for Computational Science. Tech. Report CSD TR-92-032, Computer Sci. Dept., Purdue University, West Lafayette (1992)

  4. Houstis E.N., Rice J.R.: Math. Comput. Simul. 54, 243 (2000)

    Article  Google Scholar 

  5. Bard A.J., Faulkner L.R.: Electrochemical Methods, Fundamentals and Applications. Wiley, New York (1980)

    Google Scholar 

  6. Bond A.M., Švestka M.: Collect Czech. Chem. Commun. 58, 2769 (1993)

    Article  CAS  Google Scholar 

  7. M. Trojanowicz, in Modern Techniques in Electroanalysis, ed. by P. Vanýsek (Wiley, New York, 1996), p. 187

  8. Erichsen T., Reiter S., Ryabova V., Bonsen E.M., Schuhmann W., Märkle W., Tittel C., Jung G., Speiser B.: Rev. Sci. Instrum. 76, 062204 (2005)

    Article  Google Scholar 

  9. J. Mocak, in Encyclopedia of Analytical Science, ed. by P.J. Worsfold, A. Townshend, C.F. Poole (Elsevier, Oxford, 2005), p.208

  10. Huber A.: Monatsschr. Math. Phys. 47, 240 (1939)

    Article  Google Scholar 

  11. Bieniasz L.K.: Computing 83, 25 (2008)

    Article  Google Scholar 

  12. Bieniasz L.K.: Computing 83, 163 (2008)

    Article  Google Scholar 

  13. Bieniasz L.K.: Anal. Chem. 80, 9659 (2008)

    Article  CAS  Google Scholar 

  14. Bieniasz L.K.: Computing 87, 35 (2010)

    Article  Google Scholar 

  15. Bieniasz L.K.: Electrochim. Acta. 55, 721 (2010)

    Article  CAS  Google Scholar 

  16. Bieniasz L.K.: Appl. Math. Comput. 217, 5622 (2011)

    Article  Google Scholar 

  17. Bieniasz L.K.: J. Electroanal. Chem. 642, 127 (2010)

    Article  CAS  Google Scholar 

  18. L.K. Bieniasz, J. Comp. Meth. Sci. Eng., in press. doi:10.3233/JCM-2011-0391

  19. Mirčeski V., Gulaboski R.: J. Solid State Electrochem. 7, 157 (2003)

    Google Scholar 

  20. Gulaboski R.: J. Solid State Electrochem. 13, 1015 (2009)

    Article  CAS  Google Scholar 

  21. Tokuda K., Enomoto N., Matsuda H., Koizumi N.: J. Electroanal. Chem. 159, 23 (1983)

    Article  CAS  Google Scholar 

  22. Dutt J., Singh T.: J. Electroanal. Chem. 182, 259 (1985)

    Article  CAS  Google Scholar 

  23. Singh T., Dutt J., Kaur S.: J. Electroanal. Chem. 304, 17 (1991)

    Article  CAS  Google Scholar 

  24. J.W. Weidner, P.S. Fedkiw, J. Electrochem. Soc. 138, 2514 (1991)

    Google Scholar 

  25. J.W. Weidner, P.S. Fedkiw, J. Electrochem. Soc. 139, 2076 (1992) (erratum)

  26. Delmastro J.R., Smith D.E.: J. Electroanal. Chem. 9, 192 (1965)

    Article  CAS  Google Scholar 

  27. Delmastro J.R., Smith D.E.: Anal. Chem. 38, 169 (1966)

    Article  CAS  Google Scholar 

  28. Olmstead M.L., Nicholson R.S.: J. Electroanal. Chem. 14, 133 (1967)

    Article  CAS  Google Scholar 

  29. Bond A.M., O’Halloran R.J., Ruzic I., Smith D.E.: Anal. Chem. 48, 872 (1976)

    Article  CAS  Google Scholar 

  30. Goodisman J.: J. Electroanal.Chem. 144, 33 (1983)

    Article  CAS  Google Scholar 

  31. Diao G., Zhang Z.: J. Electroanal. Chem. 410, 155 (1996)

    Article  Google Scholar 

  32. Komorsky-Lovrić Š., Lovrić M.: J. Electroanal. Chem. 384, 115 (1995)

    Article  Google Scholar 

  33. Bieniasz L.: J. Electroanal. Chem. 170, 77 (1984)

    Article  CAS  Google Scholar 

  34. Bieniasz L.K.: J. Electroanal. Chem. 188, 13 (1985)

    Article  CAS  Google Scholar 

  35. Delmastro J.R., Booman G.L.: Anal. Chem. 41, 1409 (1969)

    Article  CAS  Google Scholar 

  36. Lovrić M., Tur’yan Y.I.: Croat. Chem. Acta. 76, 189 (2003)

    Google Scholar 

  37. Shain I., Martin K.J., Ross J.W.: J. Phys. Chem. 65, 259 (1961)

    Article  CAS  Google Scholar 

  38. DeMars R.D., Shain I.: J. Am. Chem. Soc. 81, 2654 (1959)

    Article  CAS  Google Scholar 

  39. Nicholson R.S., Shain I.: Anal. Chem. 36, 706 (1964)

    Article  CAS  Google Scholar 

  40. Bieniasz L.K., González J., Molina Á., Laborda E.: Electrochim. Acta. 56, 543 (2010)

    Article  CAS  Google Scholar 

  41. Reinmuth W.H.: Anal. Chem. 34, 1446 (1962)

    Article  CAS  Google Scholar 

  42. L.R. Petzold, in Scientific Computing, Applications of Mathematics and Computing to the Physical Science, ed. by R.S. Stepleman (North-Holland, Amsterdam, 1983), p. 65

  43. Bieniasz L.K.: Comput. Chem. 21, 1 (1997)

    Article  CAS  Google Scholar 

  44. Crank J., Nicolson P.: Proc. Cambridge Phil. Soc. 43, 50 (1947)

    Article  Google Scholar 

  45. Bond A.M.: Analyst 119, R1 (1994)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesław K. Bieniasz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bieniasz, L.K. Automatic simulation of electrochemical transients by the adaptive Huber method for Volterra integral equations involving Kernel terms exp[−α(tτ)]erex{[β(tτ)]1/2} and exp[−α(tτ)]daw {[β(tτ)]1/2}. J Math Chem 50, 765–781 (2012). https://doi.org/10.1007/s10910-011-9923-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-011-9923-3

Keywords

Navigation