Skip to main content
Log in

Parameter estimation in exponentially fitted hybrid methods for second order differential problems

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this work we deal with exponentially fitted methods for the numerical solution of second order ordinary differential equations, whose solutions are known to show a prominent exponential behaviour depending on the value of an unknown parameter to be suitably determined. The knowledge of an estimation to the unknown parameter is needed in order to apply the numerical method, since its coefficients depend on the value of the parameter. We present a strategy for the practical estimation of the parameter, which is also tested on some selected problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen M.P., Tildesley D.J.: Computer Simulation of Liquids. Clarendon Press, Oxford (1987)

    Google Scholar 

  2. Atkins P.W., Friedman R.S.: Molecular Quantum Mechanics. 3rd edn. Oxford University Press, Oxford (1997)

    Google Scholar 

  3. Board A. Jr., Kale L.V., Schulten K., Skeel R.D., Schlick T.: Modeling biomolecules: larger scales, longer durations. IEEE Comput. Sci. Eng. 1, 19–30 (1994)

    Article  CAS  Google Scholar 

  4. Butcher J.C.: Numerical methods for Ordinary Differential Equations. 2nd edn. Wiley, Chichester (2008)

    Book  Google Scholar 

  5. Coleman J.P.: Order conditions for a class of two–step methods for y′′ = f(x, y). IMA J. Numer. Anal. 23, 197–220 (2003)

    Article  Google Scholar 

  6. Coleman J.P., Ixaru L. Gr.: Truncation errors in exponential fitting for oscillatory problems. SIAM J. Numer. Anal. 44, 1441–1465 (2006)

    Article  Google Scholar 

  7. D’Ambrosio R., Esposito E., Paternoster B.: Exponentially fitted two-step hybrid methods for y′′ = f(x, y). J. Comput. Appl. Math. 236(16), 4888–4897 (2011)

    Article  Google Scholar 

  8. D’Ambrosio R., Ferro M., Paternoster B.: Two-step hybrid collocation methods for y′′ = f(x, y). Appl. Math. Lett. 22, 1076–1080 (2009)

    Article  Google Scholar 

  9. D’Ambrosio R., Ferro M., Paternoster B.: Trigonometrically fitted two-step hybrid methods for second order ordinary differential equations with one or two frequencies. Math. Comput. Simul. 81, 1068–1084 (2011)

    Article  Google Scholar 

  10. D’Ambrosio R., Ixaru L. Gr., Paternoster B.: Construction of the ef-based Runse–Kutta methods revisited. Comput. Phys. Commun. 182(2), 322–329 (2011)

    Article  Google Scholar 

  11. D. Fincham, More on rotational motion of linear molecules, CCP5 Quarterly 12 (1984)

  12. Franco J.M.: Exponentially fitted explicit Runge-Kutta Nyström methods. J. Comput. Appl. Math. 167, 1–19 (2004)

    Article  Google Scholar 

  13. Gerschel A.: Liaisons intermoléculaires. InterEdition/CNRS, Paris (1995)

    Google Scholar 

  14. E. Hairer, S.P. Norsett, G. Wanner, Solving Ordinary Differential Equations I – Nonstiff Problems, Springer Series in Computational Mathematics 8, (Springer, Berlin, 2000)

  15. Hollevoet D., Van Daele M., Vanden Berghe G.: The optimal exponentially-fitted Numerov method for solving two-point boundary value problems. J. Comput. Appl. Math. 230(1), 260–269 (2009)

    Article  Google Scholar 

  16. Ixaru L.Gr.: Operations on oscillatory functions. Comput. Phys. Commun. 105, 1–19 (1997)

    Article  CAS  Google Scholar 

  17. Ixaru L.Gr., Vanden Berghe G., De Meyer H.: Frequency evaluation in exponential fitting multistep methods for ODEs. J. Comput. Appl. Math. 140, 423–435 (2002)

    Article  Google Scholar 

  18. Ixaru L.Gr, Vanden Berghe G.: Exponential Fitting. Kluwer, Dordrecht (2004)

    Google Scholar 

  19. Landau L.D., Lifshitz F.M.: Quantum Mechanics. Pergamon, New York (1965)

    Google Scholar 

  20. Messiah A.: Quantum Mechanics. Dover Publications, New York (1999)

    Google Scholar 

  21. Paternoster B.: Runge-Kutta(-Nyström) methods for ODEs with periodic solutions based on trigonometric polynomials. Appl. Numer. Math. 28, 401–412 (1998)

    Article  Google Scholar 

  22. Paternoster B.: General two-step Runge-Kutta methods based on algebraic and trigonometric polynomials. Int. J. Appl. Math. 6(4), 347–362 (2001)

    Google Scholar 

  23. B. Paternoster, Two-step Runge-Kutta-Nyström methods for y′′ = f(x, y) and P-stability, in Computational Science ICCS 2002, ed. by P.M.A.Sloot, C.J.K.Tan, J.J.Dongarra, A.G.Hoekstra; Lecture Notes in Computer Science 2331, Part III, 459-466, (Springer, Amsterdam, 2002)

  24. Petzold L.R., Jay L.O., Yen J.: Numerical solution of highly oscillatory ordinary differential equations. Acta Numerica. 6, 437–483 (1997)

    Article  Google Scholar 

  25. Prothero A., Robinson A.: On the stability and the accuracy of one-step methods for solving stiff systems of ordinary differential equations. Math. Comput. 28, 145–162 (1974)

    Article  Google Scholar 

  26. Simos T.E.: An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions. Comput. Phys. Comm 115(1), 1–8 (1998)

    Article  CAS  Google Scholar 

  27. Vanden Berghe G., De Meyer H., Van Daele M., Van Hecke T.: Exponentially fitted Runge-Kutta methods. Comput. Phys. Commun. 123, 7–15 (1999)

    Article  CAS  Google Scholar 

  28. Vande Vyver H.: Phase-fitted and amplification-fitted two-step hybrid methods for y′′ = f (x, y). J. Comput. Appl. Math. 209, 33–53 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele D’Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Ambrosio, R., Esposito, E. & Paternoster, B. Parameter estimation in exponentially fitted hybrid methods for second order differential problems. J Math Chem 50, 155–168 (2012). https://doi.org/10.1007/s10910-011-9903-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-011-9903-7

Keywords

Navigation