Skip to main content
Log in

General formulation of HDMR component functions with independent and correlated variables

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The High Dimensional Model Representation (HDMR) technique decomposes an n-variate function f (x) into a finite hierarchical expansion of component functions in terms of the input variables x = (x 1, x 2, . . . , x n ). The uniqueness of the HDMR component functions is crucial for performing global sensitivity analysis and other applications. When x 1, x 2, . . . , x n are independent variables, the HDMR component functions are uniquely defined under a specific so called vanishing condition. A new formulation for the HDMR component functions is presented including cases when x contains correlated variables. Under a relaxed vanishing condition, a general formulation for the component functions is derived providing a unique HDMR decomposition of f (x) for independent and/or correlated variables. The component functions with independent variables are special limiting cases of the general formulation. A novel numerical method is developed to efficiently and accurately determine the component functions. Thus, a unified framework for the HDMR decomposition of an n-variate function f (x) with independent and/or correlated variables is established. A simple three variable model with a correlated normal distribution of the variables is used to illustrate this new treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rabitz H., Alis Ö.F.: J. Math. Chem. 25, 197– (1999)

    Article  CAS  Google Scholar 

  2. Rabitz H., Alis Ö.F., Shorter J., Shim K.: Comput. Phys. Comm. 117, 11– (1999)

    Article  CAS  Google Scholar 

  3. Shorter J., Precis C.Op., Rabitz H.: J. Phys. Chem. A 103(36), 7192–7198 (1999)

    Article  CAS  Google Scholar 

  4. Li G., Rosenthal C., Rabitz H.: J. Phys. Chem. A 105, 7765–7777 (2001)

    Article  CAS  Google Scholar 

  5. Li G., Wang S.W., Rabitz H., Rosenthal C.: J. Math. Chem. 30, 1–30 (2001)

    Article  CAS  Google Scholar 

  6. Li G., Wang S.W., Rabitz H.: J. Phys. Chem. 106, 8721–8733 (2002)

    CAS  Google Scholar 

  7. Li G., Wang S.W., Rabitz H., Wang S., Jáffe P.R.: Chem. Eng. Sci. 57, 4445–4460 (2002)

    Article  CAS  Google Scholar 

  8. Li G., Rabitz H., Wang S.W., Georgopoulos P.G.: J. Comput. Chem. 24, 277–283 (2003)

    Article  CAS  Google Scholar 

  9. Li G., Rabitz H., Wang S.W., Georgopoulos P.G.: J. Comput. Chem. 24, 647–656 (2003)

    Article  CAS  Google Scholar 

  10. Wang S.W., Georgopoulos P.G., Li G., Rabitz H.: J. Phys. Chem. A 107, 4707–4718 (2003)

    Article  CAS  Google Scholar 

  11. Li G., Rabitz H., Schoendorf J.: J. Comput. Chem. 25, 1149–1156 (2004)

    Article  CAS  Google Scholar 

  12. Li G., Rabitz H.: J. Comput. Chem. 27, 1112–1118 (2006)

    Article  CAS  Google Scholar 

  13. Li G., Hu J.S., Wang S.W., Georgopoulos P.G., Schoendorf J., Rabitz H.: J. Phys. Chem. A 110, 2474–2485 (2006)

    Article  CAS  Google Scholar 

  14. Li G., Rabitz H., Hu J.S., Chen Z., Ju Y.: J. Math. Chem. 43(3), 1207–1232 (2008)

    Article  Google Scholar 

  15. Li G., Rabitz H., Yelvington P.E., Oluwole O.O., Bacon F., Kolb C.E., Schoendorf J.: J. Phys. Chem. 114, 6022–6032 (2010)

    Article  CAS  Google Scholar 

  16. Sobol I.M.: Modeling and Computational Experiments 1, 407–414 (1993)

    Google Scholar 

  17. Hastie T., Tibshirani R., Friedman J.: The elements of statistical learning: data mining, inference, and prediction. Springer, New York (2001)

    Google Scholar 

  18. Oakley J.E., O’Hagan A.: J. R. Stat. Soc. 66(Part 3), 751 (2004)

    Article  Google Scholar 

  19. Friedman J.H.: Ann. Stat. 29(5), 1189–1232 (2001)

    Article  Google Scholar 

  20. Hooker G.: J. Comput. Graph. Stat. 16(3), 709–732 (2007)

    Article  Google Scholar 

  21. Li G., Rabitz H.: J. Math. Chem. 48(4), 1010–1035 (2010)

    Article  CAS  Google Scholar 

  22. Deutsch F.: Best approximation in inner product space. Springer, New York (2000)

    Google Scholar 

  23. Rao C.R., Mitra S.K.: Generalized inverse of matrix and its applications. Willey, New York (1971)

    Google Scholar 

  24. Rothman A., Ho T.-S., Rabitz H.: Phys. Rev. A 72, 023416 (2005)

    Article  Google Scholar 

  25. Rothman A., Ho T.-S., Rabitz H.: J. Chem. Phys. 123, 134104 (2005)

    Article  Google Scholar 

  26. Rothman A., Ho T.-S., Rabitz H.: Phys. Rev. A 73, 053401 (2006)

    Article  Google Scholar 

  27. N. Danielson, V. Beltrani, J. Dominy, H. Rabitz, manuscript in preparation

  28. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical recipes in FORTRAN—The art of science computing, pp. 51. Cambridge university press, New York (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herschel Rabitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Rabitz, H. General formulation of HDMR component functions with independent and correlated variables. J Math Chem 50, 99–130 (2012). https://doi.org/10.1007/s10910-011-9898-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-011-9898-0

Keywords

Navigation