Szmytkowski R.: On the derivative of the Legendre function of the first kind with respect to its degree. J. Phys. A 39, 15147 (2006) [corrigendum: 40, 7819 (2007)]
Article
Google Scholar
Jolliffe A.E.: A form for \({\frac{\mathrm{d}}{\mathrm{d}n}P_{n}(\mu)}\), where P
n
(μ) is the Legendre polynomial of degree n. Mess. Math. 49, 125 (1919)
Google Scholar
I’A Bromwich T.J.: Certain potential functions and a new solution of Laplace’s equation. Proc. Lond. Math. Soc. 12, 100 (1913)
Article
Google Scholar
Schelkunoff S.A.: Theory of antennas of arbitrary size and shape. Proc. IRE 29, 493 (1941) [corrigendum: 31, 38 (1943); reprint: Proc. IEEE 72, 1165 (1984)]
Article
Google Scholar
Magnus W., Oberhettinger F., Soni R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. 3rd edn. Springer, Berlin (1966)
Google Scholar
Szmytkowski R.: Addendum to ‘On the derivative of the Legendre function of the first kind with respect to its degree’. J. Phys. A 40, 14887 (2007)
Article
Google Scholar
Carslaw H.S.: Integral equations and the determination of Green’s functions in the theory of potential. Proc. Edinburgh Math. Soc. 31, 71 (1913)
Article
Google Scholar
Carslaw H.S.: The scattering of sound waves by a cone. Math. Ann. 75, 133 (1914) [corrigendum: 75, 592 (1914)]
Article
Google Scholar
Carslaw H.S.: The Green’s function for the equation \({{\nabla}^{2}u + k^{2}u = 0}\). Proc. Lond. Math. Soc. 13, 236 (1914)
Article
Google Scholar
Macdonald H.M.: A class of diffraction problems. Proc. Lond. Math. Soc. 14, 410 (1915)
Google Scholar
Carslaw H.S.: Introduction to the Mathematical Theory of the Conduction of Heat in Solids, pp. 145–147. Macmillan, London (1921)
Google Scholar
H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Clarendon, Oxford, 1947) pp. 214 and 318
Smythe W.R.: Static and Dynamic Electricity, 2nd edn, pp. 156–157. McGraw-Hill, New York (1950)
Google Scholar
Smythe W.R.: Static and Dynamic Electricity, 3rd edn, pp. 166–167. McGraw-Hill, New York (1968)
Google Scholar
Felsen L.B.: Backscattering from wide-angle and narrow-angle cones. J. Appl. Phys. 26, 138 (1955)
Article
Google Scholar
Bailin L.L., Silver S.: Exterior electromagnetic boundary value problems for spheres and cones. IRE Trans. Antennas Propag. 4, 5 (1956) [corrigendum: 5, 313 (1957)]
Google Scholar
Felsen L.B.: Plane-wave scattering by small-angle cones. IRE Trans. Antennas Propag. 5, 121 (1957)
Article
Google Scholar
Felsen L.B.: Radiation from ring sources in the presence of a semi-infinite cone. IRE Trans. Antennas Propag. 7, 168 (1959) [corrigendum: 7, 251 (1959)]
Article
Google Scholar
Jones D.S.: The Theory of Electromagnetism, pp. 614. Pergamon, Oxford (1964)
Google Scholar
Bowman J.J.: Electromagnetic and Acoustic Scattering by Simple Shapes. In: Bowman, J.J., Senior, T.B.A., Uslenghi, P.L.E. (eds) , pp. 637. North-Holland, Amsterdam (1969)
Felsen L.B., Marcuvitz N.: Radiation and Scattering of Waves. Prentice-Hall, Englewood Cliffs, NJ (1973) [reprinted: IEEE Press, Piscataway, NJ, 1994], pp. 320, 321, 703 and 734
Google Scholar
Galitsyn A.S., Zhukovskii A.N.: Integral Transforms and Special Functions in Heat Conduction Problems. Naukova Dumka, Kiev (1976) (in Russian), pp. 236, 237 and 239
Google Scholar
Ariyasu J.C., Mills D.L.: Inelastic electron scattering by long-wavelength, acoustic phonons; image potential modulation as a mechanism. Surf. Sci. 155, 607 (1985) (appendix B)
Article
CAS
Google Scholar
Jones D.S.: Acoustic and Electromagnetic Waves, pp. 591. Clarendon, Oxford (1986)
Google Scholar
Bauer H.F.: Mass transport in a three-dimensional diffusor or confusor. Wärme-Stoffübertrag 21, 51 (1987)
Article
Google Scholar
Bauer H.F.: Response of axially excited spherical and conical liquid systems with anchored edges. Forsch. Ing.-Wes. 58(4), 96 (1992)
Article
CAS
Google Scholar
Broadbent E.G., Moore D.W.: The inclination of a hollow vortex with an inclined plane and the acoustic radiation produced. Proc. R. Soc. Lond. A 455, 1979 (1999)
Article
Google Scholar
Van Bladel J.: Electromagnetic Fields, 2nd edn. IEEE Press, Piscataway (2007) (Section 16.7.1)
Book
Google Scholar
Szmytkowski R.: The Green’s function for the wavized Maxwell fish-eye problem. J. Phys. A 44, 065203 (2011)
Article
Google Scholar
R. Szmytkowski, Some differentiation formulas for Legendre polynomials, arXiv:0910.4715
Hobson E.W.: The Theory of Spherical and Ellipsoidal Harmonics. Cambridge University Press, Cambridge (1931) [reprinted: Chelsea, New York, 1955]
Google Scholar
Robin L.: Fonctions Sphériques de Legendre et Fonctions Sphéroïdales, vol. 1. Gauthier-Villars, Paris (1957)
Google Scholar
Robin L.: Fonctions Sphériques de Legendre et Fonctions Sphéroïdales, vol. 2. Gauthier-Villars, Paris (1958)
Google Scholar
Robin L.: Fonctions Sphériques de Legendre et Fonctions Sphéroïdales, vol. 3. Gauthier-Villars, Paris (1959)
Google Scholar
Szmytkowski R.: On the derivative of the associated Legendre function of the first kind of integer degree with respect to its order (with applications to the construction of the associated Legendre function of the second kind of integer degree and order). J. Math. Chem. 46, 231 (2009)
Article
CAS
Google Scholar
R. Szmytkowski, On parameter derivatives of the associated Legendre function of the first kind (with applications to the construction of the associated Legendre function of the second kind of integer degree and order), arXiv:0910.4550
Robin L.: Derivée de la fonction associée de Legendre, de première espèce, par rapport à son degré. Compt. Rend. Acad. Sci. Paris 242, 57 (1956)
Google Scholar
Gradshteyn I.S., Ryzhik I.M.: Table of Integrals, Series, and Products, 5th edn. Academic, San Diego (1994)
Google Scholar
Prudnikov A.P., Brychkov Yu.A., Marichev O.I.: Integrals and Series. Special Functions. Supplementary Chapters, 2nd edn. Fizmatlit, Moscow (2003) (in Russian)
Google Scholar
Hostler L.: Nonrelativistic Coulomb Green’s function in momentum space. J. Math. Phys. 5, 1235 (1964)
Article
CAS
Google Scholar
Brychkov Yu.A.: On the derivatives of the Legendre functions \({P_{\nu}^{\mu}(z)}\) and \({Q_{\nu}^{\mu}(z)}\) with respect to μ and ν. Integral Transforms Spec. Funct. 21, 175 (2010)
Article
Google Scholar
Cohl H.S.: Derivatives with respect to the degree and order of associated Legendre functions for |z| > 1 using modified Bessel functions. Integral Transforms Spec. Funct. 21, 581 (2010)
Article
Google Scholar
Brychkov Yu.A.: Handbook of Special Functions. Derivatives, Integrals, Series and Other Formulas. Chapman & Hall/CRC, Boca Raton, FL (2008)
Google Scholar
Magnus W., Oberhettinger F.: Formeln und Sätze für die speziellen Funktionen der mathematischen Physik, 2nd edn. Springer, Berlin (1948)
Google Scholar
Stegun I.A.: Handbook of Mathematical Functions. In: Abramowitz, M., Stegun, I.A. (eds) , pp. 331. Dover, New York (1965)
Tsu R.: The evaluation of incomplete normalization integrals and derivatives with respect to the order of associated Legendre polynomials. J. Math. Phys. 40, 232 (1961)
Google Scholar
Carlson B.C.: Dirichlet averages of x
t log x. SIAM J. Math. Anal. 18, 550 (1987)
Article
Google Scholar
Schendel L.: Zusatz zu der Abhandlung über Kugelfunctionen S. 86 des 80. Bandes. J. Reine Angew. Math. (Borchardt J.) 82, 158 (1877)
Article
Google Scholar
Snow Ch.: Hypergeometric and Legendre Functions with Applications to Integral Equations of Potential Theory, 2nd edn. National Bureau of Standards, Washington, DC (1952)
Google Scholar
Szmytkowski R.: Closed form of the generalized Green’s function for the Helmholtz operator on the two-dimensional unit sphere. J. Math. Phys. 47, 063506 (2006)
Article
Google Scholar
Szegö G.: Orthogonal Polynomials. American Mathematical Society, New York (1939) (chapter 4)
Google Scholar
Fröhlich J.: Parameter derivatives of the Jacobi polynomials and the Gaussian hypergeometric function. Integral Transforms Spec. Funct. 2, 253 (1994)
Article
Google Scholar
R. Szmytkowski, A note on parameter derivatives of classical orthogonal polynomials. arXiv:0901.2639