Skip to main content

On the derivative of the associated Legendre function of the first kind of integer order with respect to its degree (with applications to the construction of the associated Legendre function of the second kind of integer degree and order)

Abstract

In our recent works (R. Szmytkowski, J. Phys. A 39:15147, 2006; corrigendum: 40:7819, 2007; addendum: 40:14887, 2007), we have investigated the derivative of the Legendre function of the first kind, P ν(z), with respect to its degree ν. In the present work, we extend these studies and construct several representations of the derivative of the associated Legendre function of the first kind, \({P_{\nu}^{\pm m}(z)}\), with respect to the degree ν, for \({m \in \mathbb{N}}\). At first, we establish several contour-integral representations of \({\partial P_{\nu}^{\pm m}(z)/\partial\nu}\). They are then used to derive Rodrigues-type formulas for \({[\partial P_{\nu}^{\pm m}(z)/\partial\nu]_{\nu=n}}\) with \({n \in \mathbb{N}}\). Next, some closed-form expressions for \({[\partial P_{\nu}^{\pm m}(z)/\partial\nu]_{\nu=n}}\) are obtained. These results are applied to find several representations, both explicit and of the Rodrigues type, for the associated Legendre function of the second kind of integer degree and order, \({Q_{n}^{\pm m}(z)}\); the explicit representations are suitable for use for numerical purposes in various regions of the complex z-plane. Finally, the derivatives \({[\partial^{2}P_{\nu}^{m}(z)/\partial\nu^{2}]_{\nu=n}, [\partial Q_{\nu}^{m}(z)/\partial\nu]_{\nu=n}}\) and \({[\partial Q_{\nu}^{m}(z)/\partial\nu]_{\nu=-n-1}}\), all with m > n, are evaluated in terms of \({[\partial P_{\nu}^{-m}(\pm z)/\partial\nu]_{\nu=n}}\). The present paper is a complementary to a recent one (R. Szmytkowski, J. Math. Chem 46:231, 2009), in which the derivative \({\partial P_{n}^{\mu}(z)/\partial\mu}\) has been investigated.

References

  1. Szmytkowski R.: On the derivative of the Legendre function of the first kind with respect to its degree. J. Phys. A 39, 15147 (2006) [corrigendum: 40, 7819 (2007)]

    Article  Google Scholar 

  2. Jolliffe A.E.: A form for \({\frac{\mathrm{d}}{\mathrm{d}n}P_{n}(\mu)}\), where P n (μ) is the Legendre polynomial of degree n. Mess. Math. 49, 125 (1919)

    Google Scholar 

  3. I’A Bromwich T.J.: Certain potential functions and a new solution of Laplace’s equation. Proc. Lond. Math. Soc. 12, 100 (1913)

    Article  Google Scholar 

  4. Schelkunoff S.A.: Theory of antennas of arbitrary size and shape. Proc. IRE 29, 493 (1941) [corrigendum: 31, 38 (1943); reprint: Proc. IEEE 72, 1165 (1984)]

    Article  Google Scholar 

  5. Magnus W., Oberhettinger F., Soni R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. 3rd edn. Springer, Berlin (1966)

    Google Scholar 

  6. Szmytkowski R.: Addendum to ‘On the derivative of the Legendre function of the first kind with respect to its degree’. J. Phys. A 40, 14887 (2007)

    Article  Google Scholar 

  7. Carslaw H.S.: Integral equations and the determination of Green’s functions in the theory of potential. Proc. Edinburgh Math. Soc. 31, 71 (1913)

    Article  Google Scholar 

  8. Carslaw H.S.: The scattering of sound waves by a cone. Math. Ann. 75, 133 (1914) [corrigendum: 75, 592 (1914)]

    Article  Google Scholar 

  9. Carslaw H.S.: The Green’s function for the equation \({{\nabla}^{2}u + k^{2}u = 0}\). Proc. Lond. Math. Soc. 13, 236 (1914)

    Article  Google Scholar 

  10. Macdonald H.M.: A class of diffraction problems. Proc. Lond. Math. Soc. 14, 410 (1915)

    Google Scholar 

  11. Carslaw H.S.: Introduction to the Mathematical Theory of the Conduction of Heat in Solids, pp. 145–147. Macmillan, London (1921)

    Google Scholar 

  12. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Clarendon, Oxford, 1947) pp. 214 and 318

  13. Smythe W.R.: Static and Dynamic Electricity, 2nd edn, pp. 156–157. McGraw-Hill, New York (1950)

    Google Scholar 

  14. Smythe W.R.: Static and Dynamic Electricity, 3rd edn, pp. 166–167. McGraw-Hill, New York (1968)

    Google Scholar 

  15. Felsen L.B.: Backscattering from wide-angle and narrow-angle cones. J. Appl. Phys. 26, 138 (1955)

    Article  Google Scholar 

  16. Bailin L.L., Silver S.: Exterior electromagnetic boundary value problems for spheres and cones. IRE Trans. Antennas Propag. 4, 5 (1956) [corrigendum: 5, 313 (1957)]

    Google Scholar 

  17. Felsen L.B.: Plane-wave scattering by small-angle cones. IRE Trans. Antennas Propag. 5, 121 (1957)

    Article  Google Scholar 

  18. Felsen L.B.: Radiation from ring sources in the presence of a semi-infinite cone. IRE Trans. Antennas Propag. 7, 168 (1959) [corrigendum: 7, 251 (1959)]

    Article  Google Scholar 

  19. Jones D.S.: The Theory of Electromagnetism, pp. 614. Pergamon, Oxford (1964)

    Google Scholar 

  20. Bowman J.J.: Electromagnetic and Acoustic Scattering by Simple Shapes. In: Bowman, J.J., Senior, T.B.A., Uslenghi, P.L.E. (eds) , pp. 637. North-Holland, Amsterdam (1969)

  21. Felsen L.B., Marcuvitz N.: Radiation and Scattering of Waves. Prentice-Hall, Englewood Cliffs, NJ (1973) [reprinted: IEEE Press, Piscataway, NJ, 1994], pp. 320, 321, 703 and 734

    Google Scholar 

  22. Galitsyn A.S., Zhukovskii A.N.: Integral Transforms and Special Functions in Heat Conduction Problems. Naukova Dumka, Kiev (1976) (in Russian), pp. 236, 237 and 239

    Google Scholar 

  23. Ariyasu J.C., Mills D.L.: Inelastic electron scattering by long-wavelength, acoustic phonons; image potential modulation as a mechanism. Surf. Sci. 155, 607 (1985) (appendix B)

    Article  CAS  Google Scholar 

  24. Jones D.S.: Acoustic and Electromagnetic Waves, pp. 591. Clarendon, Oxford (1986)

    Google Scholar 

  25. Bauer H.F.: Mass transport in a three-dimensional diffusor or confusor. Wärme-Stoffübertrag 21, 51 (1987)

    Article  Google Scholar 

  26. Bauer H.F.: Response of axially excited spherical and conical liquid systems with anchored edges. Forsch. Ing.-Wes. 58(4), 96 (1992)

    Article  CAS  Google Scholar 

  27. Broadbent E.G., Moore D.W.: The inclination of a hollow vortex with an inclined plane and the acoustic radiation produced. Proc. R. Soc. Lond. A 455, 1979 (1999)

    Article  Google Scholar 

  28. Van Bladel J.: Electromagnetic Fields, 2nd edn. IEEE Press, Piscataway (2007) (Section 16.7.1)

    Book  Google Scholar 

  29. Szmytkowski R.: The Green’s function for the wavized Maxwell fish-eye problem. J. Phys. A 44, 065203 (2011)

    Article  Google Scholar 

  30. R. Szmytkowski, Some differentiation formulas for Legendre polynomials, arXiv:0910.4715

  31. Hobson E.W.: The Theory of Spherical and Ellipsoidal Harmonics. Cambridge University Press, Cambridge (1931) [reprinted: Chelsea, New York, 1955]

    Google Scholar 

  32. Robin L.: Fonctions Sphériques de Legendre et Fonctions Sphéroïdales, vol. 1. Gauthier-Villars, Paris (1957)

    Google Scholar 

  33. Robin L.: Fonctions Sphériques de Legendre et Fonctions Sphéroïdales, vol. 2. Gauthier-Villars, Paris (1958)

    Google Scholar 

  34. Robin L.: Fonctions Sphériques de Legendre et Fonctions Sphéroïdales, vol. 3. Gauthier-Villars, Paris (1959)

    Google Scholar 

  35. Szmytkowski R.: On the derivative of the associated Legendre function of the first kind of integer degree with respect to its order (with applications to the construction of the associated Legendre function of the second kind of integer degree and order). J. Math. Chem. 46, 231 (2009)

    Article  CAS  Google Scholar 

  36. R. Szmytkowski, On parameter derivatives of the associated Legendre function of the first kind (with applications to the construction of the associated Legendre function of the second kind of integer degree and order), arXiv:0910.4550

  37. Robin L.: Derivée de la fonction associée de Legendre, de première espèce, par rapport à son degré. Compt. Rend. Acad. Sci. Paris 242, 57 (1956)

    Google Scholar 

  38. Gradshteyn I.S., Ryzhik I.M.: Table of Integrals, Series, and Products, 5th edn. Academic, San Diego (1994)

    Google Scholar 

  39. Prudnikov A.P., Brychkov Yu.A., Marichev O.I.: Integrals and Series. Special Functions. Supplementary Chapters, 2nd edn. Fizmatlit, Moscow (2003) (in Russian)

    Google Scholar 

  40. Hostler L.: Nonrelativistic Coulomb Green’s function in momentum space. J. Math. Phys. 5, 1235 (1964)

    Article  CAS  Google Scholar 

  41. Brychkov Yu.A.: On the derivatives of the Legendre functions \({P_{\nu}^{\mu}(z)}\) and \({Q_{\nu}^{\mu}(z)}\) with respect to μ and ν. Integral Transforms Spec. Funct. 21, 175 (2010)

    Article  Google Scholar 

  42. Cohl H.S.: Derivatives with respect to the degree and order of associated Legendre functions for |z| > 1 using modified Bessel functions. Integral Transforms Spec. Funct. 21, 581 (2010)

    Article  Google Scholar 

  43. Brychkov Yu.A.: Handbook of Special Functions. Derivatives, Integrals, Series and Other Formulas. Chapman & Hall/CRC, Boca Raton, FL (2008)

    Google Scholar 

  44. Magnus W., Oberhettinger F.: Formeln und Sätze für die speziellen Funktionen der mathematischen Physik, 2nd edn. Springer, Berlin (1948)

    Google Scholar 

  45. Stegun I.A.: Handbook of Mathematical Functions. In: Abramowitz, M., Stegun, I.A. (eds) , pp. 331. Dover, New York (1965)

  46. Tsu R.: The evaluation of incomplete normalization integrals and derivatives with respect to the order of associated Legendre polynomials. J. Math. Phys. 40, 232 (1961)

    Google Scholar 

  47. Carlson B.C.: Dirichlet averages of x t log x. SIAM J. Math. Anal. 18, 550 (1987)

    Article  Google Scholar 

  48. Schendel L.: Zusatz zu der Abhandlung über Kugelfunctionen S. 86 des 80. Bandes. J. Reine Angew. Math. (Borchardt J.) 82, 158 (1877)

    Article  Google Scholar 

  49. Snow Ch.: Hypergeometric and Legendre Functions with Applications to Integral Equations of Potential Theory, 2nd edn. National Bureau of Standards, Washington, DC (1952)

    Google Scholar 

  50. Szmytkowski R.: Closed form of the generalized Green’s function for the Helmholtz operator on the two-dimensional unit sphere. J. Math. Phys. 47, 063506 (2006)

    Article  Google Scholar 

  51. Szegö G.: Orthogonal Polynomials. American Mathematical Society, New York (1939) (chapter 4)

    Google Scholar 

  52. Fröhlich J.: Parameter derivatives of the Jacobi polynomials and the Gaussian hypergeometric function. Integral Transforms Spec. Funct. 2, 253 (1994)

    Article  Google Scholar 

  53. R. Szmytkowski, A note on parameter derivatives of classical orthogonal polynomials. arXiv:0901.2639

Download references

Acknowledgments

The author wishes to thank an anonymous referee to Ref. [50], whose suggestion to use the contour-integration technique to evaluate the derivative [∂ Pν(z)/∂ν] ν=n inspired the present work.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution,and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radosław Szmytkowski.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Szmytkowski, R. On the derivative of the associated Legendre function of the first kind of integer order with respect to its degree (with applications to the construction of the associated Legendre function of the second kind of integer degree and order). J Math Chem 49, 1436–1477 (2011). https://doi.org/10.1007/s10910-011-9826-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-011-9826-3

Keywords

  • Special functions
  • Legendre functions
  • Spherical harmonics
  • Parameter derivatives

Mathematics Subject Classification (2000)

  • 33C45
  • 33C05