Skip to main content
Log in

A Matrix Based Indexing HDMR method for multivariate data modelling

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Modelling multivariate data of real life problems from engineering, chemistry, physics, mathematics or other related sciences, in which function values are known only at arbitrarily distributed points of the problem domain, is an important and complicated issue since there exist mathematical and computational complexities in the analytical structure construction process coming from the multivariance. The Plain High Dimensional Model Representation (HDMR) method expresses a multivariate problem in terms of less-variate problems. In this work, a Matrix Based Indexing HDMR method is developed to make the Plain HDMR philosophy employable for the multivariate data partitioning process. This new method will have the ability of dealing with less-variate data sets by partitioning the given data set into univariate, bivariate and trivariate data sets. Interpolating these partitioned data sets will construct an approximate analytical structure as the model of the given multivariate data modelling problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sobol I.M.: Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. (MMCE) 1, 407–414 (1993)

    Google Scholar 

  2. Rabitz H., Alış Ö.F., Shorter J., Shim K.: Efficient input-output model representations. Comput. Phys. Comm. 117, 11–20 (1999)

    Article  CAS  Google Scholar 

  3. Rabitz H., Alış Ö.: General foundations of high dimensional model representations. J. Math. Chem. 25, 197–233 (1999)

    Article  CAS  Google Scholar 

  4. Li G., Wang S.-W., Rabitz H.: Practical approaches to construct RS-HDMR component functions. J. Phys. Chem. A 106, 8721–8733 (2002)

    Article  CAS  Google Scholar 

  5. Demiralp M.: High dimensional model representation and its application varieties. Math. Res. 9, 146–159 (2003)

    Google Scholar 

  6. Tunga M.A., Demiralp M.: A factorized high dimensional model representation on the partitioned random discrete data. Appl. Num. Anal. Comp. Math. 1, 231–241 (2004)

    Article  Google Scholar 

  7. Tunga M.A., Demiralp M.: A factorized high dimensional model representation on the nodes of a finite hyperprismatic regular grid. Appl. Math. Comput. 164, 865–883 (2005)

    Article  Google Scholar 

  8. Tunga B., Demiralp M.: Hybrid high dimensional model representation approximants and their utilization in applications. Math. Res. 9, 438–446 (2003)

    Google Scholar 

  9. Tunga M.A., Demiralp M.: Hybrid high dimensional model representation (HHDMR) on the partitioned data. J. Comput. Appl. Math. 185, 107–132 (2006)

    Article  Google Scholar 

  10. Demiralp M.: Illustrative implementations to show how logarithm based high dimensional model representation works for various function structures. WSEAS Trans. Comput. 5, 1339–1344 (2006)

    Google Scholar 

  11. Ziehn T., Tomlin A.S.: A global sensitivity study of sulfur chemistry in a premixed methane flame model using HDMR. Int. J. Chem. Kinet. 40, 742–753 (2008)

    Article  CAS  Google Scholar 

  12. Ziehn T., Tomlin A.S.: GUI-HDMR—a software tool for global sensitivity analysis of complex models. Environ. Model. Softw. 24, 775–785 (2009)

    Article  Google Scholar 

  13. Sridharan J., Chen T.: Modeling multiple input switching of CMOS gates in DSM technology using HDMR. Proc. Des. Autom. Test Eur. 1(3), 624–629 (2006)

    Google Scholar 

  14. Rao B.N., Chowdhury R.: Probabilistic analysis using high dimensional model representation and fast fourier transform. Int. J. Comput. Methods Eng. Sci. Mech. 9, 342–357 (2008)

    Article  Google Scholar 

  15. Chowdhury R., Rao B.N.: Hybrid high dimensional model representation for reliability analysis. Comput. Methods Appl. Mech. Eng. 198, 753–765 (2009)

    Article  Google Scholar 

  16. Gomez M.C., Tchijov V., Leon F., Aguilar A.: A tool to improve the execution time of air quality Mmodels. Environ. Model. Softw. 23, 27–34 (2008)

    Article  Google Scholar 

  17. Banerjee I., Ierapetritou M.G.: Design optimization under parameter uncertainty for general black-box models. Ind. Eng. Chem. Res. 41, 6687–6697 (2002)

    Article  CAS  Google Scholar 

  18. Banerjee I., Ierapetritou M.G.: Parametric process synthesis for general nonlinear models. Comput. Chem. Eng. 27, 1499–1512 (2003)

    Article  CAS  Google Scholar 

  19. Banerjee I., Ierapetritou M.G.: Model independent parametric decision making. Ann. Oper. Res. 132, 135–155 (2004)

    Article  Google Scholar 

  20. Shan S., Wang G.G.: Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally- expensive black-Box functions. Struct. Multidiscip. Optim. 41, 219–241 (2010)

    Article  Google Scholar 

  21. Tunga M.A., Demiralp M.: A new approach for data partitioning through high dimensional model representation. Int. J. Comput. Math. 85, 1779–1792 (2008)

    Article  Google Scholar 

  22. Tunga M.A., Demiralp M.: Data partitioning via generalized high dimensional model representation (GHDMR) and multivariate interpolative applications. Math. Res. 9, 447–462 (2003)

    Google Scholar 

  23. M.A. Tunga, M. Demiralp, in Introductory Steps for an Indexing Based HDMR Algorithm: Lumping HDMR, 1st WSEAS International Conference on Multivariate Analysis and its Application in Science and Engineering. (Istanbul, Turkey, May 27–30, 2008), pp. 129–135

  24. Tunga M.A., Demiralp M.: A reverse technique for lumping high dimensional model representation method. WSEAS Trans. Math. 8, 213–218 (2009)

    Google Scholar 

  25. M.A. Tunga, in An Indexing Based Approximation Method for Multivariate Interpolation Problems, The 1st International Symposium on Computing in Science & Engineering (ISCSE 2010). (Kusadasi, Aydin, Turkey, June 3–5 2010). pp. 56–60

  26. Zemanian A.: Distribution Theory and Transform Analysis, An Introduction to Generalized Functions, with Applications. Dover Publications Inc., New York (1987)

    Google Scholar 

  27. Burden R.L., Faires J.D.: Numerical Analysis. Brooks/Cole, CA (2001)

    Google Scholar 

  28. de Boor C.: A Practical Guide to Splines, Revised edn. Springer, New York (2001)

    Google Scholar 

  29. Shikin E.V., Plis A.I.: Handbook on Splines for the User. CRC Press, Florida (1995)

    Google Scholar 

  30. Bertsimas D., Tsitsiklis J.N.: Introduction to Linear Optimization. Athena Scientific, Belmont, MA (1997)

    Google Scholar 

  31. Bryant V.: Metric Spaces: Iteration and Application. Cambridge University Press, New York (1996)

    Google Scholar 

  32. K. Teknomo, Similarity Measurement. http://people.revoledu.com/kardi/tutorial/Similarity/

  33. Deitel H.M., Deitel P.J., Nieto T.R., McPhie D.C.: How to Program Perl. Prentice Hall, New Jersey (2001)

    Google Scholar 

  34. Oevel W., Postel F., Wehmeier S., Gerhard J.: The MuPAD Tutorial. Springer, New York (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Alper Tunga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tunga, M.A. A Matrix Based Indexing HDMR method for multivariate data modelling. J Math Chem 49, 1092–1114 (2011). https://doi.org/10.1007/s10910-011-9800-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-011-9800-0

Keywords

Navigation