Journal of Mathematical Chemistry

, Volume 49, Issue 2, pp 328–334 | Cite as

Alternate solutions for two particular third order kinetic rate laws

Brief Communication

Abstract

Alternate solutions to third order rate law expressions which are first order in one reactant and second order in another for the generalized reaction \({{aA}+{bB}\mathop \rightarrow \limits^{k_A }{P}}\) with a limiting reactant and for simple cubic autocatalysis \({{A}+{ 2B}\mathop \rightarrow \limits^{k_A }{3B}}\) are presented and discussed. These solutions are expressed in terms of the Lambert function W[x] with argument x(t) = α exp(αβt), where α and β are empirical parameters. These expressions permit the concentrations of the reactant species to be explicitly represented as dependent functions of time. For the generalized reaction, the solution involves considering exactly which species is limiting, so that the correct branch of the Lambert function can be determined. For simple cubic autocatalysis, the solution is shown to be consistent with the characteristics associated with clock reactions. An exact expression for the “induction time” associated with a clock reaction described by this mechanism is also derived.

Keywords

Third order rate law Kinetics Lambert W Cubic autocatalysis Clock reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gadzhiev O.B., Igantov S.K., Razuvaev A.G., Masunov A.E.: J. Phys. Chem. A 113, 9092 (2009)CrossRefGoogle Scholar
  2. 2.
    Tsukahara H., Ishida T., Mayumi M.: Nitric Oxide 3, 191 (1999)CrossRefGoogle Scholar
  3. 3.
    Ford P.C., Lorkovic I.M: Chem. Rev. 102, 993 (2002)CrossRefGoogle Scholar
  4. 4.
    Swain C.G., Powell A.L., Sheppard W.A., Morga C.R.: J. Am. Chem. Soc. 101, 3576 (1979)CrossRefGoogle Scholar
  5. 5.
    Cecchi A., Bartalucci G., Chiappe C., Bianchini R.: Int. J. Chem. Kin. 39, 197 (2007)CrossRefGoogle Scholar
  6. 6.
    Benson S.W.: The Foundations of Chemical Kinetics. McGraw-Hill, New York (1960)Google Scholar
  7. 7.
    Eberhart J.G., Levin E.A.: J. Chem. Educ. 72, 193 (1995)CrossRefGoogle Scholar
  8. 8.
    E.W. Weisstein, Lambert W-Function. http://mathworld.wolfram.com/LambertW-Function.html
  9. 9.
    Corless R.M., Gonnet G.H., Hare D.E.G., Jeffrey D.J., Knuth D.E.: Adv. Compt. Math. 72, 329 (1996)CrossRefGoogle Scholar
  10. 10.
    Valluri S.R., Jeffrey D.J., Corless R.M.: Can. J. Phys. 778, 823 (2000)CrossRefGoogle Scholar
  11. 11.
    Hayes B.: Am. Sci. 93, 104 (2005)Google Scholar
  12. 12.
    Schnell S., Mendoza C.: J. Theo. Bio. 187, 207 (1997)CrossRefGoogle Scholar
  13. 13.
    Berberan-Santos M.N.: MATCH Comm. Math. Comput. Chem. 63, 283 (2010)Google Scholar
  14. 14.
    Williams B.W.: J. Chem. Educ. 87, 647 (2010)CrossRefGoogle Scholar
  15. 15.
    MATLAB 7.8.0347, The Mathworks, Inc.; Natick, MA 01760 (R 2009A)Google Scholar
  16. 16.
    MATHEMATICA 7, Wolfram Research, Inc.; Champaign, IL (2008)Google Scholar
  17. 17.
    Billingham J., Needham D.J.: Phil. Trans. R. Soc. London A 340, 569 (1992)CrossRefGoogle Scholar
  18. 18.
    Scott S.K.: Waves and Chaos in Chemical Kinetics. Oxford University Press, Oxford (1994)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of ChemistryBucknell UniversityLewisburgUSA

Personalised recommendations