Skip to main content
Log in

On the unimolecular elimination of gas-phase iodine monobromide following excitation in the visible wavelength region

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Dissociation dynamics of iodine monobromide has been theoretically investigated at numerous excitation wavelengths in the visible wavelength region (450–540 nm) by an accurate time-dependent dynamical simulation technique. The interatomic potential energy curves are derived from ab initio methods which are then employed in a Landau–Zener treatment to calculate the spin-orbit branching ratios in the two halogen products. The extinction coefficients, in arbitrary units, for the discrete electron transition are obtained through a numerical algorithm. Based on these elastic scattering calculations, the results of Br*: Br branching ratios are determined at several simulation wavelengths. Also the electronic properties are evaluated to elucidate the mechanism of chemical dynamics of the system. It is found that the branching dynamics can be clarified via the Landau–Zener model, which treats an avoided crossing between two states of a given nature and evaluates a nonadiabatic effect relevant to the dissociation of IBr molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vazquez S.A., Martinez-Nunez E.: Chem. Phys. 349, 219 (2008)

    Article  CAS  Google Scholar 

  2. Pittner J., Lischka H., Barbatti M.: Chem. Phys. 356, 147 (2009)

    Article  CAS  Google Scholar 

  3. Rojas-Lorenzo G., Rubayo-Soneira J., Alberti S.F.: Chem. Phys. 362, 34 (2009)

    Article  CAS  Google Scholar 

  4. Douberly G.E., Miller R.E.: Chem. Phys. 361, 118 (2009)

    Article  CAS  Google Scholar 

  5. Rao T.R., Rao B.J., Mahapatra S.: Chem. Phys. 365, 129 (2009)

    Article  Google Scholar 

  6. Meng Q., Zhao J., Xu Y., Yue D.: Chem. Phys. 362, 65 (2009)

    Article  CAS  Google Scholar 

  7. Koppel H., Schubert B., Lischka H.: Chem. Phys. 343, 319 (2009)

    Article  Google Scholar 

  8. Loukhovitski B.I., Starik A.M.: Chem. Phys. 360, 18 (2009)

    Article  CAS  Google Scholar 

  9. Malhado J.P., Hynes J.T.: Chem. Phys. 347, 39 (2008)

    Article  CAS  Google Scholar 

  10. Borowski A., Kuhn O.: Chem. Phys. 347, 523 (2008)

    Article  CAS  Google Scholar 

  11. Friedrichs J., Damianos K., Frank I.: Chem. Phys. 347, 17 (2008)

    Article  CAS  Google Scholar 

  12. Antol I., Vazdar M., Barbatti M., Eckert-Maksic M.: Chem. Phys. 349, 308 (2008)

    Article  CAS  Google Scholar 

  13. Schinke R., Grebenshchikov S.Y., Zhu H.: Chem. Phys. 346, 99 (2008)

    Article  CAS  Google Scholar 

  14. Hydutsky D.P., Bianco N.J., Castleman A.W. Jr: Chem. Phys. 350, 212 (2008)

    Article  CAS  Google Scholar 

  15. Frank I., Damianos K.: Chem. Phys. 343, 347 (2008)

    Article  CAS  Google Scholar 

  16. Vetter R.: Chem. Phys. 343, 303 (2008)

    Article  CAS  Google Scholar 

  17. Zhang Y., Straub J.E.: J. Chem. Phys. 130, 095102 (2009)

    Article  Google Scholar 

  18. Berkdemir C.: J. Math. Chem. 46, 139 (2009)

    Article  CAS  Google Scholar 

  19. Dey B.K., Ayers P.W.: J. Math. Chem. 45, 981 (2009)

    Article  CAS  Google Scholar 

  20. Zhang S.W., Tan D.J.: J. Math. Chem. 44, 217 (2008)

    Article  CAS  Google Scholar 

  21. Pisarenko Y.A.: Russ. J. Phys. Chem. A. 82, 1 (2008)

    Article  CAS  Google Scholar 

  22. Durov V.A., Shilov I.Y.: Russ. J. Phys. Chem. A. 82, 83 (2008)

    Article  CAS  Google Scholar 

  23. Deineka V.I.: Russ. J. Phys. Chem. A. 82, 108 (2008)

    Article  CAS  Google Scholar 

  24. Totchasov E.D., Alper G.A.: Russ. J. Phys. Chem. A. 82, 71 (2008)

    Article  CAS  Google Scholar 

  25. Margulis M.A.: Russ. J. Phys. Chem. A. 82, 122 (2008)

    Article  CAS  Google Scholar 

  26. Čučulović A.A., Veselinović D., Miljanić S.S.: Russ. J. Phys. Chem. A. 83, 1547 (2009)

    Google Scholar 

  27. Gavrichev K.S., Ryumin M.A., Tyurin A.V., Gurevich V.M., Komissarova L.N., Khoroshilov A.V., Sharpataya G.A.: Russ. J. Phys. Chem. A. 83, 327 (2009)

    CAS  Google Scholar 

  28. Subbotin O.S., Belosludov V.R., Brodskaya E.N., Piotrovskaya E.M., Sizov V.V.: Russ. J. Phys. Chem. A. 82, 1303 (2008)

    CAS  Google Scholar 

  29. Dyakonov S.G., Klinov A.V., Dyakonov G.S.: Russ. J. Phys. Chem. A. 83, 875 (2009)

    CAS  Google Scholar 

  30. Butman M.F., Motalov V.B., Kudin L.S., Grishin A.E., Kryuchkov A.S., Krämer K.W.: Russ. J. Phys. Chem. A. 82, 164 (2008)

    CAS  Google Scholar 

  31. Putintsev D.N., Putintsev N.M.: Russ. J. Phys. Chem. A. 83, 265 (2009)

    CAS  Google Scholar 

  32. Sargsyan G.N.: Russ. J. Phys. Chem. A. 83, 1712 (2009)

    CAS  Google Scholar 

  33. Zhang D.: Polish J. Chem. 83, 2009 (2009)

    CAS  Google Scholar 

  34. Durov V.A., Moscalets A.P.: Russ. J. Phys. Chem. A. 83, 990 (2009)

    CAS  Google Scholar 

  35. Belashchenko D.K., Ostrovskii O.I.: Russ. J. Phys. Chem. A. 82, 364 (2008)

    CAS  Google Scholar 

  36. Bykov V.I., Tsybenova S.B.: Russ. J. Phys. Chem. A. 83, 609 (2009)

    CAS  Google Scholar 

  37. Gao G., Park S.H., Kang H.S.: Chem. Phys. 355, 50 (2009)

    Article  CAS  Google Scholar 

  38. Pierdominici-Sottile G.: J. Palma, Chem. Phys. 363, 59 (2009)

    CAS  Google Scholar 

  39. Mishra S., Singh R.K., Ojha A.K.: Chem. Phys. 355, 14 (2009)

    Article  CAS  Google Scholar 

  40. Grigorian G., Cenian A.: Chem. Phys. 359, 31 (2009)

    Article  CAS  Google Scholar 

  41. Beck M.E., Schindler M.: Chem. Phys. 356, 121 (2009)

    Article  CAS  Google Scholar 

  42. Jorgensen S., Gross A.: Chem. Phys. 362, 8 (2009)

    Article  CAS  Google Scholar 

  43. Nsangou M., Senent M.L., Hochlaf M.: Chem. Phys. 355, 164 (2009)

    Article  CAS  Google Scholar 

  44. Dietzek B., Tarnovsky A.N., Yartsev A.: Chem. Phys. 357, 54 (2009)

    Article  CAS  Google Scholar 

  45. Zhang D.: Chem. Phys. 353, 87 (2008)

    Article  CAS  Google Scholar 

  46. Vrakking M.J.J., Villeneuve D.M., Stolow A.: J. Chem. Phys. 105, 5647 (1996)

    Article  CAS  Google Scholar 

  47. Zhang D.: J. Math. Chem. 46, 576 (2009)

    Article  CAS  Google Scholar 

  48. Busch G.E., Mahoney R.T., Morse R.I., Wilson K.R.: J. Chem. Phys. 51, 837 (1969)

    Article  CAS  Google Scholar 

  49. Zhang D., Abdel-Hafiez A., Zhang B.: Chem. Phys. Lett. 428, 49 (2006)

    Article  CAS  Google Scholar 

  50. Zhang D., Abdel-Hafiez A., Zhang B.: Chem. Phys. 342, 119 (2007)

    Article  CAS  Google Scholar 

  51. Zhang D., Abdel-Hafiez A., Zhang B.: Chin. J. Chem. Phys. 21, 12 (2008)

    Article  Google Scholar 

  52. Zhang D.: Russ. J. Phys. Chem. A. 82, 2299 (2008)

    CAS  Google Scholar 

  53. Bony H., Shapiro M., Yogev A.: Chem. Phys. Lett. 107, 603 (1984)

    Article  CAS  Google Scholar 

  54. Pastel R.L., Hagard G.D., Miller H.C., Leone S.R.: Chem. Phys. Lett. 183, 565 (1994)

    Article  Google Scholar 

  55. Pastel R.L., McIver J.K., Miller H.C., Hager G.D.: J. Chem. Phys. 100, 3624 (1994)

    Article  CAS  Google Scholar 

  56. Zhang D.: J. Math. Chem. 47, 29 (2010)

    Article  CAS  Google Scholar 

  57. Kim Y.S., Jung Y.J., Jung K.H.: J. Chem. Phys. 107, 3805 (1997)

    Article  CAS  Google Scholar 

  58. Zhang L., Sun H.: Chin. J. Chem. Phys. 22, 69 (2009)

    Article  Google Scholar 

  59. Jeung G.: Chin. J. Chem. Phys. 22, 187 (2009)

    Article  CAS  Google Scholar 

  60. Zhang R., Li X., Zhang X.: Chin. J. Chem. Phys. 22, 235 (2009)

    Article  CAS  Google Scholar 

  61. Zhang T., Zheng N.: Chin. J. Chem. Phys. 22, 246 (2009)

    Article  Google Scholar 

  62. Zhang R., Tan Z., Luo S.: Chin. J. Chem. Phys. 21, 221 (2008)

    Article  CAS  Google Scholar 

  63. Zhang X., Li M., Tian S.: Chin. J. Chem. Phys. 21, 255 (2008)

    Article  CAS  Google Scholar 

  64. Zhang L., Guo H., Pan Y., Qi F.: Chin. J. Chem. Phys. 21, 547 (2008)

    Article  Google Scholar 

  65. Seery D.J., Britton D.: J. Phys. Chem. 68, 2263 (1964)

    Article  CAS  Google Scholar 

  66. Nikitin E.E.: Theory of Elementary Atomic and Molecular Processes in Gases, pp. 107. Oxford University Press, New York (1974)

    Google Scholar 

  67. Yang S., Bersohn R.: J. Chem. Phys. 61, 4400 (1974)

    Article  CAS  Google Scholar 

  68. Zhang D.: Polish J. Chem. 83, 153 (2009)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongfang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D. On the unimolecular elimination of gas-phase iodine monobromide following excitation in the visible wavelength region. J Math Chem 48, 424–438 (2010). https://doi.org/10.1007/s10910-010-9684-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-010-9684-4

Keywords

Navigation