Skip to main content
Log in

New features of the steady-state rate related with the initial concentration of substrate in the diphenolase and monophenolase activities of tyrosinase

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Tyrosinase has two types of enzymatic activities: the hydroxylation of monophenols to o-diphenols (monophenolase activity) and oxidation of o-diphenols to o-quinones (diphenolase activity). The action on o-diphenols involves two substrates: oxygen and o-diphenol, while the mechanism proposed is a Uni Uni Bi Bi ping-pong. In this contribution, we demonstrate experimentally that there is a kinetically preferred pathway, which translates into the appearance of curves of initial velocity vs. initial diphenol concentration shows inhibition by an excess of substrate, while sigmoid curves are obtained when the initial velocity vs. initial oxygen concentration are graphed. However, the action mechanism of the enzyme on monophenols, which is more complex because it involves three substrates (monophenol, oxygen and o-diphenol), does behave differently from the hyperbolic behaviour as regards the initial velocity vs. initial monophenol concentration, results that can be explained if the limiting step in the action of tyrosinase is the hydroxylation of monophenol to o-diphenol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Cornish-Bowden, in Fundamentals of enzyme kinetics, ed. by A. Cornish-Bowden (Butterworths, London, 1979), pp. 172–175

  2. R.B. Silverman, in Contemporary enzyme kinetics and mechanism, ed. by D.L. Purich (San Diego, 2009), pp. 246–248

  3. W. Ferdinand, in The enzyme molecule, ed. by W. Ferdinand (John Wiley and Sons, London, 1976), pp. 139–185

  4. Atkinson D., Walton G.M.: J. Biol. Chem. 240, 757 (1965)

    CAS  Google Scholar 

  5. Hathaway J.A., Atkinson D.E.: J. Biol. Chem. 238, 2875 (1963)

    CAS  Google Scholar 

  6. Wolfe R.G., Neilands J.B.: J. Biol. Chem. 221, 61 (1956)

    CAS  Google Scholar 

  7. Solomon E.I., Sundaram U.M., Machonkin T.E.: Chem. Rev. 96, 2563 (1996)

    Article  CAS  Google Scholar 

  8. Jolley R.L., Evans L.H., Makino N., Mason H.S.: J. Biol. Chem. 249, 335 (1974)

    CAS  Google Scholar 

  9. Matoba Y., Kumagai T., Yamamoto A., Yoshitsu H., Sugiyama M.: J. Biol. Chem. 281, 8981 (2006)

    Article  CAS  Google Scholar 

  10. Decker H., Schweikardt T., Tuczek F.: Angew. Chem. Int. Ed. 45, 4546 (2006)

    Article  CAS  Google Scholar 

  11. Deeth R.J., Diedrich C.: J. Biol. Inorg. Chem. 15, 117 (2010)

    Article  CAS  Google Scholar 

  12. Sanchez-Ferrer A., Rodriguez-Lopez J.N., Garcia-Canovas F., Garcia-Carmona F.: Biochim. Biophys. Acta 1247, 1 (1995)

    Google Scholar 

  13. Garcia-Molina F., Munoz J.L., Varon R., Rodriguez-Lopez J.N., Garcia-Canovas F., Tudela J.: J. Agric. Food Chem. 55, 9739 (2007)

    Article  CAS  Google Scholar 

  14. Fenoll L.G., Rodriguez-Lopez J.N., Garcia-Sevilla F., Garcia-Ruiz P.A., Varon R., Garcia-Canovas F., Tudela J.: Biochim. Biophys. Acta 1548, 1 (2001)

    CAS  Google Scholar 

  15. Rodriguez-Lopez J.N., Tudela J., Varon R., Garcia-Carmona F., Garcia-Canovas F.: J. Biol. Chem. 267, 3801 (1992)

    CAS  Google Scholar 

  16. Munoz-Munoz J.L., Garcia-Molina F., Varon R., Tudela J., Garcia-Canovas F., Rodriguez-Lopez J.N.: Biochim. Biophys. Acta 1794, 1017 (2009)

    CAS  Google Scholar 

  17. Rodriguez-Lopez J.N., Fenoll L.G., Garcia-Ruiz P.A., Varon R., Tudela J., Thorneley R.N., Garcia- Canovas F.: Biochemistry 39, 10497 (2000)

    Article  CAS  Google Scholar 

  18. Bradford M.M.: Anal. Biochem. 72, 248 (1976)

    Article  CAS  Google Scholar 

  19. Garcia-Carmona F., Garcia-Canovas F., Iborra J.L., Lozano J.A.: Biochim. Biophys. Acta 717, 124 (1982)

    CAS  Google Scholar 

  20. Garcia-Canovas F., Garcia-Carmona F., Vera-Sanchez J., Iborra J.L., Lozano J.A.: J. Biol. Chem. 257, 8738 (1982)

    Google Scholar 

  21. Munoz J.L., Garcia-Molina F., Varon R., Rodriguez-Lopez J.N., Garcia-Canovas F., Tudela J.: Anal. Biochem. 351, 128 (2006)

    Article  CAS  Google Scholar 

  22. Rodriguez-Lopez J.N., Ros-Martinez J.R., Varon R., Garcia-Canovas F.: Anal. Biochem. 202, 356 (1992)

    Article  CAS  Google Scholar 

  23. Jandel Scientific, Sigma Plot 9.0 for WindowsTM; Jandel Scientific: Core Madera (2006)

  24. Van Schaftingen E., Jet M.-F., Hue L., Hers H.-G.: Proc. Natl. Acad. Sci. USA 78, 3483 (1981)

    Article  CAS  Google Scholar 

  25. Ros J.R., Rodriguez-Lopez J.N., Garcia-Canovas F.: Biochim. Biophys. Acta 1204, 33 (1994)

    CAS  Google Scholar 

  26. Fenoll L.G., Peñalver M.J., Rodriguez-Lopez J.N., Garcia-Ruiz P.A., Garcia-Canovas F., Tudela J.: Biochem. J. 380, 643 (2004)

    Article  CAS  Google Scholar 

  27. Peñalver M.J., Rodriguez-Lopez J.N., Garcia-Ruiz P.A., Garcia-Canovas F., Tudela J.: Biochim. Biophys. Acta 1650, 128 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Garcia-Cánovas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz-Muñoz, J.L., Garcia-Molina, F., Varon, R. et al. New features of the steady-state rate related with the initial concentration of substrate in the diphenolase and monophenolase activities of tyrosinase. J Math Chem 48, 347–362 (2010). https://doi.org/10.1007/s10910-010-9675-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-010-9675-5

Keywords

Navigation