Skip to main content
Log in

Formal theory of the comparative relations: its application to the study of quantum similarity and dissimilarity measures and indices

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The study proposes a formal theory of comparative relations characterized by a group of abstract definitions and axioms. This abstract characterization allows us to rigorously define in a very general form what a comparative relation is, which can in turn be used as starting point in every case where comparative analysis is used. Some of the consequences of this formalization—when applied to existing results- are analyzed, particularly those related with the consistency of the results of the comparisons. Following, a study was conducted of descriptors of Quantum Quantitative Structure–Property Relationships models proposed by Carbó-Dorca et al. Several quantum comparative indices such as: Carbó, Hodgkin–Richards, Petke, Tanimoto, conjugate Petke and conjugate Hodgkin–Richards were also analyzed. The proposed theory gives a solid theoretical basis for comparative analysis that will have a positive impact on a broad spectrum of disciplines, where the field of chemistry could be one of the most important beneficiaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ivins W.M.: Art & Geometry. Dover, New York (1964)

    Google Scholar 

  2. Schoenwolf G.C.: Atlas of Descriptive Embryology. Addison Wesley, Reading (2007)

    Google Scholar 

  3. Chang R., College W.: Química. McGraw Hill Interamericana Ed, Mexico DF (2002)

    Google Scholar 

  4. Grahan Solomons T.W.: Fundamentals of Organic Chemistry. Wiley, New york (1994)

    Google Scholar 

  5. A.C. Good, in, ed. by P.M. Dean Molecular Similarity in Drug Design, (Chapman-Hall, London, 1995), p. 24

  6. Benigni R., Cotta-Ramusino M., Georgi F., Gallo G.: J. Med. Chem. 38, 629–635 (1995)

    Article  CAS  Google Scholar 

  7. So S.S., Karplus M.: J. Med. Chem. 40, 4347–4359 (1997)

    Article  CAS  Google Scholar 

  8. Bultinck P., Gironés X., Carbó-Dorca R.: Rev. Comput. Chem. 21, 127–207 (2005)

    Article  CAS  Google Scholar 

  9. Amat L., Carbó-Dorca R., Ponec R.: J. Comput. Chem. 19, 1575–1583 (1998)

    Article  CAS  Google Scholar 

  10. Robert D., Amat L., Carbó-Dorca R.: Int. J. Quantum Chem. 80, 265–282 (2000)

    Article  CAS  Google Scholar 

  11. Gironés X., Carbó-Dorca R.: J. Chem. Inf. Comput. Sci. 42, 1185–1193 (2002)

    Google Scholar 

  12. Besalú E., Gironés X., Amat L., Carbó-Dorca R.: Acc. Chem. Res. 35, 289–295 (2002)

    Article  Google Scholar 

  13. Carbó-Dorca R., Damme S.V.: Theor. Chem. Account 118, 673–679 (2007)

    Article  Google Scholar 

  14. Carbó-Dorca R.: SAR and QSAR Environ. Res. 18, 265–284 (2007)

    Article  Google Scholar 

  15. Carbó-Dorca R., Gironés X.: Int. J. Quantum Chem. 101, 8–20 (2005)

    Article  Google Scholar 

  16. Gillet V.J., Wild D.J., Willett P., Bradshaw J.: Comp. J. 41, 547–558 (1998)

    Article  Google Scholar 

  17. E.E. Hodgkin, W.G. Richards, J. Chem. Commun. 1342–1344 (1986)

  18. Meyer A.Y., Richards W.G.: J. Comput. Aided Mol. Des. 5, 427–439 (1995)

    Article  Google Scholar 

  19. Amovilli C., McWeeney R.: J. Mol. Struct. (Theochem) 227, 1–9 (1991)

    Article  Google Scholar 

  20. Good A.C.: J. Mol. Graph 10, 144–151 (1992)

    Article  CAS  Google Scholar 

  21. Carbó-Dorca R., Leyda L., Arnau M.: Int. J. Quantum Chem. 17, 1185–1189 (1980)

    Article  Google Scholar 

  22. Carbó-Dorca R., Domingo L.: Int. J. Quantum Chem. 32, 517–545 (1987)

    Article  Google Scholar 

  23. Hodgkin E.E., Richards W.G.: Int. J. Quantum Chem. Quantum Biol. Symp. 14, 105–110 (1987)

    Article  CAS  Google Scholar 

  24. Petke J.D.: J. Comput. Chem. 14, 928–933 (1993)

    Article  CAS  Google Scholar 

  25. Tou J.T., González R.C.: Pattern Recognition Principles. Addison-Wesley, Reading (1974)

    Google Scholar 

  26. Maggiora G.M., Petke J.D., Mestres J.: J. Math. Chem. 31, 251–270 (2002)

    Article  CAS  Google Scholar 

  27. Robert D., Carbó-Dorca R.: J. Chem. Inf. Comput. Sci. 38, 469–475 (1998)

    CAS  Google Scholar 

  28. Robert D., Carbó-Dorca R.: J. Chem. Inf. Comput. Sci. 38, 620–623 (1998)

    CAS  Google Scholar 

  29. Bultinck P., Carbó-Dorca R.: J. Math. Chem. 36, 191–200 (2004)

    Article  CAS  Google Scholar 

  30. Manaut F., Sanz F., Jose J., Milesi M.: J. Comput. Aided Mol. Des. 5, 371–380 (1991)

    Article  CAS  Google Scholar 

  31. Good A.C., Hodgkin E.E., Richards W.G.: J. Chem. Inf. Comput. Sci. 32, 188–191 (1992)

    CAS  Google Scholar 

  32. E. Codorniu-Hernández, A.D. Boese, C. Schauste, A. Rolo-Naranjo, R.A. Miranda-Quintana, L.A. Montero-Cabrera, R. Boese, MMH-2 as a new approach for the prediction of intermolecular interactions: the cristal parking of acetamide. Submitted for publication to J. Phys. Chem. A (2009)

  33. L.D. Kudriávtsev, Curso de Análisis Matemático (Spanish translation); Mir: Moscú, vol. 2 (1984)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfo José Batista-Leyva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miranda-Quintana, RA., Cruz-Rodes, R., Codorniu-Hernandez, E. et al. Formal theory of the comparative relations: its application to the study of quantum similarity and dissimilarity measures and indices. J Math Chem 47, 1344–1365 (2010). https://doi.org/10.1007/s10910-009-9658-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-009-9658-6

Keywords

Navigation