Skip to main content
Log in

Neville elimination: an efficient algorithm with application to chemistry

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Solving linear systems is often required in chemical problems. Besides, birth and death processes occur in many chemical phenomena and the matrices associated to these processes are totally positive, that is, all their minors are nonnegative. Neville elimination is an elimination procedure very useful when dealing with these matrices. Convergence and stability of iterative refinement using Neville elimination are analyzed, in particular when the coefficient matrix is totally positive. Other applications to chemistry are commented and numerical experiments are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso P., Gasca M., Peña J.M.: Backward error analysis of Neville elimination. Appl. Numer. Math. 23, 193 (1997)

    Article  Google Scholar 

  2. Alonso P., Delgado J., Gallego R., Peña J.M.: Iterative refinement for Neville elimination. Int. J. Comput. Math. 86(2), 341 (2009)

    Article  Google Scholar 

  3. Ando T.: Totally positive matrices. Linear Algebra Appl. 90, 165 (1987)

    Article  Google Scholar 

  4. Blanco M.A., Francisco E., Luaña V.: GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debey model. Comput. Phys. Commun. 158, 57 (2004)

    Article  CAS  Google Scholar 

  5. de Boor C., Pinkus A.: Backward error analysis for totally positive linear systems. Numer. Math. 23, 193 (1997)

    Article  Google Scholar 

  6. Cramer C.J.: Essentials of Computational Chemistry: Theories and Models. John Wiley and Sons, England (2004)

    Google Scholar 

  7. Demmel J., Koev P.: The accurate and efficient solution of a totally positive generalized vandermonde linear system. SIAM J. Matrix Anal. Appl. 27, 142 (2005)

    Article  Google Scholar 

  8. Eliezer S., Ricci R.A.: High-Pressure Equations of State: Theory and Applications. North Holland, Amsterdam (1991)

    Google Scholar 

  9. Forsythe G.E., Moler C.B.: Computer Solutions of Linear Algebraic Systems. Prentice-Hall, Englewood Clifs, NJ (1967)

    Google Scholar 

  10. Gasca M., Peña J.M.: Total positivity and Neville elimination. Linear Algebra Appl. 165, 25 (1992)

    Article  Google Scholar 

  11. Gasca M., Peña J.M.: Scaled pivoting in Gauss and Neville elimination for totally positive systems. Appl. Numer. Math. 13, 345 (1993)

    Article  Google Scholar 

  12. Gasca M., Peña J.M.: A matricial description of Neville elimination with applications to total positivity. Linear Algebra Appl. 202, 33 (1994)

    Article  Google Scholar 

  13. Gasca M., Michelli C.A.: Total positivity and its Applications. Kluwer Academic Publishers, The Netherlands (1996)

    Google Scholar 

  14. Gassó M., Torregrosa J.R.: A totally positive factorization of rectangular matrices by the Neville elimination. SIAM J. Matrix Anal. Appl. 25, 986 (2004)

    Article  Google Scholar 

  15. Higham N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002)

    Google Scholar 

  16. Karlin S., McGregor J.: A characterization of birth and death processes. Proc. Natl. Acad. Sci. USA 45, 375 (1959)

    Article  CAS  Google Scholar 

  17. Karlin S., McGregor J.: Coincidence properties of birth and death processes. Pac. J. Math. 9, 1109 (1959)

    Google Scholar 

  18. Karlin S., McGregor J.: Coincidence probabilities. Pac. J. Math. 9, 1141 (1959)

    Google Scholar 

  19. Karlin S., McGregor J.: Classical diffusion processes and total positivity. J. Math. Anal. Appl. 1, 163 (1960)

    Article  Google Scholar 

  20. C.M. Losert-Valiente Kroon, I.J. Ford, Stochastic birth and death equations to treat chemistry and nucleation in small systems, in Nucleation and atmospheric aerosols, 17th international conference (Springer, Galway, 2007), pp. 332–336

  21. Mitrophanov A.Y.: Note on Zeifman’s bounds on the rate of convergence for birth-death processes. J. Appl. Probab. 41, 593 (2004)

    Article  Google Scholar 

  22. Moler C.B.: Iterative refinement in floating point. J. Assoc. Comput. Mach. 14, 316 (1967)

    Google Scholar 

  23. Mujica A., Rubio A., Muñoz A., Needs R.J.: High-pressure phases of group-IV, III-V, and II-VI compounds. Rev. Mod. Phys. 75, 863 (2003)

    Article  CAS  Google Scholar 

  24. Oettli W., Prager W.: Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides. Numer. Math. 6, 405 (1964)

    Article  Google Scholar 

  25. Ortega J.M.: Numerical Analysis A Second Course. SIAM, Philadelphia (1990)

    Google Scholar 

  26. Peña J.M.: Shape preserving representations in Computer Aided-Geometric Design. Nova Science Publishers, New York (1999)

    Google Scholar 

  27. Ross J.V., Pollett P.K.: Extinction times for a birth-death process with two phases. Math. Biosci 202, 310 (2006)

    Article  CAS  Google Scholar 

  28. Skeel R.D.: Scaling for numerical stability in Gaussian elimination. J. Assoc. Comput. Mach. 26, 494 (1979)

    Google Scholar 

  29. Skeel R.D.: Iterative refinement implies numerical stability for Gaussian elimination. Math. Comput. 35, 817 (1980)

    Article  Google Scholar 

  30. J.H. Wilkinson, Progress report on the automatic computing engine. report MA/17/1024, Mathematics Division, Department of Scientific and Industrial Research, National Physical Laboratory, Teddington, UK, April 1948

  31. J.H. Wilkinson, Rounding errors in algebraic processes, notes on applied science 32. Her Majesty’s Stationery Office (1963)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Alonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso, P., Delgado, J., Gallego, R. et al. Neville elimination: an efficient algorithm with application to chemistry. J Math Chem 48, 3–20 (2010). https://doi.org/10.1007/s10910-009-9648-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-009-9648-8

Keywords

Navigation