Skip to main content
Log in

Exploiting numerical behaviors in SPH

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Smoothed Particle Hydrodynamics is a meshless particle method able to evaluate unknown field functions and relative differential operators. This evaluation is done by performing an integral representation based on a suitable smoothing kernel function which, in the discrete formulation, involves a set of particles scattered in the problem domain. Two fundamental aspects strongly characterizing the development of the method are the smoothing kernel function and the particle distribution. Their choice could lead to the so-called particle inconsistency problem causing a loose of accuracy in the approximation; several corrective strategies can be adopted to overcome this problem. This paper focuses on the numerical behaviors of SPH with respect to the consistency restoring problem and to the particle distribution choice, providing useful hints on how these two aspects affect the goodness of the approximation and moreover how they mutually influence themselves. A series of numerical studies are performed approximating 1D, 2D and 3D functions validating this idea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ala G., Francomano E., Tortorici A., Toscano E., Viola F.: A smoothed particle interpolation scheme for transient electromagnetic simulation. IEEE Trans. Magn. 42, 647–650 (2006)

    Article  Google Scholar 

  2. Ala G., Francomano E., Tortorici A., Toscano E., Viola F.: Corrective meshless particle formulations for time domain Maxwell’s equations. J. Comput. Appl. Math. 210, 34–46 (2007)

    Article  Google Scholar 

  3. Belytschko T., Krongauz Y., Dolbow J., Gerlach C.: On the completeness of meshfree methods. Int. J. Numer. Methods Eng. 43, 785–819 (1998)

    Article  Google Scholar 

  4. Belytschko T., Krongauz Y., Organ D., Fleming M., Krysl P.: Meshless methods: an overview and recent developments. Comput. Meth. Appl. Mech. Eng. 139, 3–47 (1996)

    Article  Google Scholar 

  5. Bonet J., Lok T.S.L.: Variational and momentum preservation aspects of smooth particle hydrodynamics formulations. Comput. Meth. Appl. Mech. Eng. 180, 97–115 (1999)

    Article  Google Scholar 

  6. Bonet J., Kulasegaram S.: A simplified approach to enhance the performance of smooth particle hydrodynamics methods. Appl. Math. Comput. 126, 133–155 (2002)

    Article  Google Scholar 

  7. Chen J.K., Beraun J.E., Carney T.C.: A corrective smoothed particle method for boundary value problems in heat conduction. Int. J. Numer. Methods Eng. 46, 231–252 (1999)

    Article  Google Scholar 

  8. G. Di Blasi, E. Francomano, A. Tortorici, E. Toscano, On the Consistency Restoring in SPH. in Proceedings of the CMMSE (International Conference on Computational and Mathematical Methods in Science and Engineering) (2009)

  9. Fulk D.A., Quinn D.W.: An analysis of 1-D smoothed particle hydrodynamics kernels. J. Comput. Phys. 126, 165–180 (1996)

    Article  CAS  Google Scholar 

  10. Gingold R.A., Monaghan J.J.: Smoothed particle hydrodynamics: theory and application to nonspherical stars. Mon. Not. Roy. Astron. Soc. 181, 375–389 (1985)

    Google Scholar 

  11. Hernquist L., Katz N.: TreeSPH: a unification of SPH with the hierarchical tree method. Astrophys. J. Suppl. Ser. 70, 419–446 (1989)

    Article  Google Scholar 

  12. Laguna P.: Smoothed particle interpolation. Astrophys. J. 439, 814–821 (1994)

    Article  Google Scholar 

  13. Lastiwka M., Quinlan N., Basa M.: Adaptive particle distribution for smoothed particle hydrodynamics. Int. J. Numer. Methods Fluids 47, 1403–1409 (2005)

    Article  Google Scholar 

  14. Liu G.R., Liu M.B.: Smoothed Particle Hydrodynamics—a Mesh-Free Particle Method. World Scientific Publishing, Singapore (2003)

    Book  Google Scholar 

  15. Liu G.R.: Mesh Free Methods—Moving beyond the Finite Element Method. CRC Press, Boca Raton (2003)

    Google Scholar 

  16. Liu M.B., Liu G.R.: Restoring particle consistency in smoothed particle hydrodynamics. Appl. Numer. Math. 56, 19–36 (2006)

    Article  Google Scholar 

  17. Liu M.B., Liu G.R., Lam K.Y.: Constructing smoothing functions in smoothed particle hydrodynamics with applications. J. Comput. Appl. Math. 155, 263–284 (2003)

    Article  Google Scholar 

  18. Monaghan J.J.: An introduction to SPH. Comput. Phys. Commun. 48, 89–96 (1988)

    Article  CAS  Google Scholar 

  19. Monaghan J.J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992)

    Article  Google Scholar 

  20. Monaghan J.J., Lattanzio J.C.: A refined particle method for astrophysical problems. Astron. Astrophys. 149, 135–143 (1985)

    Google Scholar 

  21. J.P. Morris, Analysis of Smoothed Particle Hydrodynamics with Applications. Ph.D. Thesis, Monash University, (1996)

  22. Shapiro P.R., Martel H., Villumsen J.V., Owen J.M.: Adaptive smoothed particle hydrodynamics, with application to cosmology: methodology. Astrophys. J. Suppl. Ser. 103, 269–330 (1996)

    Article  CAS  Google Scholar 

  23. D. Shepard. A Two Dimensional Function for Irregularly Spaced Data. in Proceedings of the ACM National Conference, (1968)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Di Blasi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Blasi, G., Francomano, E., Tortorici, A. et al. Exploiting numerical behaviors in SPH. J Math Chem 48, 128–136 (2010). https://doi.org/10.1007/s10910-009-9642-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-009-9642-1

Keywords

Navigation