Skip to main content
Log in

High order multistep methods with improved phase-lag characteristics for the integration of the Schrödinger equation

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this work we introduce a new family of 12-step linear multistep methods for the integration of the Schrödinger equation. The new methods are constructed by adopting a new methodology which improves the phase lag characteristics by vanishing both the phase lag function and its first derivatives at a specific frequency. This results in decreasing the sensitivity of the integration method on the estimated frequency of the problem. The efficiency of the new family of methods is proved via error analysis and numerical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Quinlan, Resonances and instabilities in symmetric multistep methods. preprint arXiv astro-ph/9901136 (1999)

  2. Lyche T.: Chebyshevian multistep methods for ordinary differential equations. Num. Math. 19, 65–75 (1972)

    Google Scholar 

  3. Gautschi W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)

    Google Scholar 

  4. Gr L., Ixaru G.V.: Berghe, Exponential Fitting, Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht/Boston/London (2004)

    Google Scholar 

  5. Brusa L., Nigro L.: A one-step method for direct integration of structural dynamic equations. Int. J. Numer. Methods Eng. 15, 685–699 (1980)

    Google Scholar 

  6. Ixaru L.Gr., Micu M.: Topics in Theoretical Physics. Central Institute of Physics, Bucharest (1978)

    Google Scholar 

  7. Landau L.D., Lifshitz F.M.: Quantum Mechanics. Pergamon, New York (1965)

    Google Scholar 

  8. I. Prigogine, S. Rice (eds.), Advances in Chemical Physics Vol. 93: New Methods in Computational Quantum Mechanics (Wiley, 1997)

  9. Herzberg G.: Spectra of Diatomic Molecules. Van Nostrand, Toronto (1950)

    Google Scholar 

  10. T.E. Simos, in Atomic Structure Computations in Chemical Modelling: Applications and Theory, ed by A. Hinchliffe (UMIST, The Royal Society of Chemistry, 2000), pp. 38–142

  11. Simos T.E.: Numerical methods for 1D, 2D and 3D differential equations arising in chemical problems. Chem. Model.: Appl. Theory, Roy. Soc. Chem. 2, 170–270 (2002)

    CAS  Google Scholar 

  12. T.E. Simos, Numerical Solution of Ordinary Differential Equations with Periodical Solution. Doctoral Dissertation, National Technical University of Athens, Greece, 1990 (in Greek)

  13. Konguetsof A., Simos T.E.: On the Construction of exponentially-fitted methods for the numerical solution of the Schrödinger Equation. J. Comput. Methods Sci. Eng. 1, 143–165 (2001)

    Google Scholar 

  14. Raptis A.D., Allison A.C.: Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)

    Google Scholar 

  15. Raptis A.D.: Exponential multistep methods for ordinary differential equations. Bull. Greek Math. Soc. 25, 113–126 (1984)

    Google Scholar 

  16. Ixaru L.Gr.: Numerical Methods for Differential Equations and Applications. Reidel, Dordrecht- Boston-Lancaster (1984)

    Google Scholar 

  17. Ixaru L.Gr., Rizea M.: A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)

    Google Scholar 

  18. Simos T.E., Williams P.S.: A New Runge-Kutta-Nystrom method with phase-lag of order infinity for the numerical solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 45, 123–137 (2002)

    CAS  Google Scholar 

  19. Simos T.E.: Multiderivative methods for the numerical solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 45, 7–26 (2004)

    Google Scholar 

  20. Raptis A.D.: Exponentially-fitted solutions of the eigenvalue Shrödinger equation with automatic error control. Comput. Phys. Commun. 28, 427–431 (1983)

    Google Scholar 

  21. Raptis A.D.: On the numerical solution of the Schrodinger equation. Comput. Phys. Commun. 24, 1–4 (1981)

    Google Scholar 

  22. Kalogiratou Z., Simos T.E.: A P-stable exponentially-fitted method for the numerical integration of the Schrödinger equation. Appl. Math. Comput. 112, 99–112 (2000)

    Google Scholar 

  23. Raptis A.D., Simos T.E.: A four-step phase-fitted method for the numerical integration of second order initial-value problem. BIT 31, 160–168 (1991)

    Google Scholar 

  24. P. Henrici, Discrete Variable Methods in Ordinary Differential Equations (Wiley, 1962)

  25. Chawla M.M.: Uncoditionally stable Noumerov-type methods for second order differential equations. BIT 23, 541–542 (1983)

    Google Scholar 

  26. Chawla M.M., Rao P.S.: A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems. J. Comput. Appl. Math. 11(3), 277–281 (1984)

    Google Scholar 

  27. Anastassi Z.A., Simos T.E.: A family of exponentially-fitted Runge-Kutta methods with exponential order up to three for the numerical solution of the Schrödinger equation. J. Math. Chem. 41(1), 79–100 (2007)

    CAS  Google Scholar 

  28. Monovasilis T., Kalogiratou Z., Simos T.E.: Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 40(3), 257–267 (2006)

    CAS  Google Scholar 

  29. Psihoyios G., Simos T.E.: The numerical solution of the radial Schrödinger equation via a trigonometrically fitted family of seventh algebraic order Predictor-Corrector methods. J. Math. Chem. 40(3), 269–293 (2006)

    CAS  Google Scholar 

  30. Simos T.E.: A four-step exponentially fitted method for the numerical solution of the Schrödinger equation. J. Math. Chem. 40(3), 305–318 (2006)

    CAS  Google Scholar 

  31. Monovasilis T., Kalogiratou Z., Simos T.E.: Exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 37(3), 263–270 (2005)

    CAS  Google Scholar 

  32. Kalogiratou Z., Monovasilis T., Simos T.E.: Numerical solution of the two-dimensional time independent Schrödinger equation with Numerov-type methods. J. Math. Chem. 37(3), 271–279 (2005)

    CAS  Google Scholar 

  33. Anastassi Z.A., Simos T.E.: Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 281–293 (2005)

    CAS  Google Scholar 

  34. Psihoyios G., Simos T.E.: Sixth algebraic order trigonometrically fitted predictor-corrector methods for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 37(3), 295–316 (2005)

    CAS  Google Scholar 

  35. Sakas D.P., Simos T.E.: A family of multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 317–331 (2005)

    CAS  Google Scholar 

  36. Simos T.E.: Exponentially - fitted multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 36(1), 13–27 (2004)

    CAS  Google Scholar 

  37. Tselios K., Simos T.E.: Symplectic methods of fifth order for the numerical solution of the radial Shrodinger equation. J. Math. Chem. 35(1), 55–63 (2004)

    CAS  Google Scholar 

  38. Simos T.E.: A family of trigonometrically-fitted symmetric methods for the efficient solution of the Schrödinger equation and related problems. J. Math. Chem. 34(1–2), 39–58 (2003)

    CAS  Google Scholar 

  39. Tselios K., Simos T.E.: Symplectic methods for the numerical solution of the radial Shrödinger equation. J. Math. Chem. 34(1–2), 83–94 (2003)

    CAS  Google Scholar 

  40. Vigo-Aguiar J., Simos T.E.: Family of twelve steps exponential fitting symmetric multistep methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 32(3), 257–270 (2002)

    CAS  Google Scholar 

  41. Avdelas G., Kefalidis E., Simos T.E.: New P-stable eighth algebraic order exponentially-fitted methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 31(4), 371–404 (2002)

    CAS  Google Scholar 

  42. Simos T.E., Vigo-Aguiar J.: Symmetric eighth algebraic order methods with minimal phase-lag for the numerical solution of the Schrödinger equation. J. Math. Chem. 31(2), 135–144 (2002)

    CAS  Google Scholar 

  43. Z. Kalogiratou, T.E. Simos, Construction of trigonometrically and exponentially fitted Runge-Kutta-Nystrom methods for the numerical solution of the Schrödinger equation and related problems a method of 8th algebraic order. J. Math. Chem. 31(2), 211–232

  44. Simos T.E., Vigo-Aguiar J.: A modified phase-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. J. Math. Chem. 30(1), 121–131 (2001)

    CAS  Google Scholar 

  45. Avdelas G., Konguetsof A., Simos T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 1. Development of the basic method. J. Math. Chem. 29(4), 281–291 (2001)

    CAS  Google Scholar 

  46. Avdelas G., Konguetsof A., Simos T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 2. Development of the generator; optimization of the generator and numerical results. J. Math. Chem. 29(4), 293–305 (2001)

    CAS  Google Scholar 

  47. Vigo-Aguiar J., Simos T.E.: A family of P-stable eighth algebraic order methods with exponential fitting facilities. J. Math. Chem. 29(3), 177–189 (2001)

    Google Scholar 

  48. Simos T.E.: A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical solution of the Schrödinger equation. J. Math. Chem. 27(4), 343–356 (2000)

    CAS  Google Scholar 

  49. Avdelas G., Simos T.E.: Embedded eighth order methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 26(4), 327–341 (1999)

    Google Scholar 

  50. Simos T.E.: A family of P-stable exponentially-fitted methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 25(1), 65–84 (1999)

    CAS  Google Scholar 

  51. Simos T.E.: Some embedded modified Runge-Kutta methods for the numerical solution of some specific Schrödinger equations. J. Math. Chem. 24(1–3), 23–37 (1998)

    CAS  Google Scholar 

  52. Simos T.E.: Eighth order methods with minimal phase-lag for accurate computations for the elastic scattering phase-shift problem. J. Math. Chem. 21(4), 359–372 (1997)

    CAS  Google Scholar 

  53. Amodio P., Gladwell I., Romanazzi G.: Numerical solution of general bordered ABD linear systems by cyclic reduction. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(1), 5–12 (2006)

    Google Scholar 

  54. Capper S.D., Cash J.R., Moore D.R.: Lobatto-Obrechkoff formulae for 2nd order two-point boundary value problems. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(1), 13–25 (2006)

    Google Scholar 

  55. Capper S.D., Moore D.R.: On high order MIRK schemes and Hermite-Birkhoff interpolants. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(1), 27–47 (2006)

    Google Scholar 

  56. Cash J.R., Sumarti N., Abdulla T.J., Vieira I.: The derivation of interpolants for nonlinear two-point boundary value problems. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(1), 49–58 (2006)

    Google Scholar 

  57. Cash J.R., Girdlestone S.: Variable step Runge-Kutta-Nystrm methods for the numerical solution of reversible systems. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(1), 59–80 (2006)

    Google Scholar 

  58. Cash J.R., Mazzia F.: Hybrid mesh selection algorithms based on conditioning for two-point boundary value problems. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(1), 81–90 (2006)

    Google Scholar 

  59. Iavernaro F., Mazzia F., Trigiante D.: Stability and conditioning in numerical analysis. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(1), 91–112 (2006)

    Google Scholar 

  60. Iavernaro F., Trigiante D.: Discrete conservative vector fields induced by the trapezoidal method. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(1), 113–130 (2006)

    Google Scholar 

  61. Mazzia F., Sestini A., Trigiante D.: BS linear multistep methods on non-uniform meshes. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(1), 131–144 (2006)

    Google Scholar 

  62. Shampine L.F., Muir P.H., Xu H.: A user-friendly fortran BVP solver. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(2), 201–217 (2006)

    Google Scholar 

  63. Berghe G.V., Van Daele M.: Exponentially-fitted Strmer/Verlet methods. JNAIAM J. Numer. Anal. Indust. Appl. Math. 1(3), 241–255 (2006)

    Google Scholar 

  64. Aceto L., Pandolfi R., Trigiante D.: Stability analysis of linear multistep methods via polynomial type variation. JNAIAM J. Numer. Anal. Indust. Appl. Math. 2(1–2), 1–9 (2007)

    Google Scholar 

  65. Psihoyios G.: A block implicit advanced step-point (BIAS) algorithm for stiff differential systems. Comput. Lett. 2(1–2), 51–58 (2006)

    Google Scholar 

  66. Enright W.H.: On the use of ‘arc length’ and ‘defect’ for mesh selection for differential equations. Comput. Lett. 1(2), 47–52 (2005)

    Google Scholar 

  67. Simos T.E.: P-stable four-step exponentially-fitted method for the numerical integration of the Schrödinger equation. Comput. Lett. 1(1), 37–45 (2005)

    Google Scholar 

  68. Simos T.E.: Stabilization of a four-step exponentially-fitted method and its application to the Schrödinger equation. Int. J. Modern Phys. C 18(3), 315–328 (2007)

    Google Scholar 

  69. Wang Z.: P-stable linear symmetric multistep methods for periodic initial-value problems. Comput. Phys. Commun. 171, 162–174 (2005)

    CAS  Google Scholar 

  70. Simos T.E.: A Runge-Kutta Fehlberg method with phase-lag of order infinity for initial value problems with oscillating solution. Comput. Math. Appl. 25, 95–101 (1993)

    Google Scholar 

  71. Simos T.E.: Runge-Kutta interpolants with minimal phase-lag. Comput. Math. Appl. 26, 43–49 (1993)

    Google Scholar 

  72. Simos T.E.: Runge-Kutta-Nyström interpolants for the numerical integration of special second-order periodic initial-value problems. Comput. Math. Appl. 26, 7–15 (1993)

    Google Scholar 

  73. Simos T.E., Mitsou G.V.: A family of four-step exponential fitted methods for the numerical integration of the radial Schrödinger equation. Comput. Math. Appl. 28, 41–50 (1994)

    Google Scholar 

  74. Simos T.E., Mousadis G.: A two-step method for the numerical solution of the radial Schrödinger equation. Comput. Math. Appl. 29, 31–37 (1995)

    Google Scholar 

  75. Avdelas G., Simos T.E.: Block Runge-Kutta methods for periodic initial-value problems. Comput. Math. Appl. 31, 69–83 (1996)

    Google Scholar 

  76. Avdelas G., Simos T.E.: Embedded methods for the numerical solution of the Schrödinger equation. Computers and Mathematics with Applications 31, 85–102 (1996)

    Google Scholar 

  77. Papakaliatakis G., Simos T.E.: A new method for the numerical solution of fourth order BVPs with oscillating solutions. Comput. Math. Appl. 32, 1–6 (1996)

    Google Scholar 

  78. Simos T.E.: An extended Numerov-type method for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 33, 67–78 (1997)

    Google Scholar 

  79. Simos T.E.: A new hybrid imbedded variable-step procedure for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 36, 51–63 (1998)

    Google Scholar 

  80. Simos T.E.: Bessel and Neumann fitted methods for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 42, 833–847 (2001)

    Google Scholar 

  81. Konguetsof A., Simos T.E.: An exponentially-fitted and trigonometrically-fitted method for the numerical solution of periodic initial-value problems. Comput. Math. Appl. 45, 547–554 (2003)

    Google Scholar 

  82. Anastassi Z.A., Simos T.E.: An optimized Runge-Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175(1), 1–9 (2005)

    Google Scholar 

  83. Psihoyios G., Simos T.E.: A fourth algebraic order trigonometrically fitted predictor-corrector scheme for IVPs with oscillating solutions. J. Comput. Appl. Math. 175(1), 137–147 (2005)

    Google Scholar 

  84. Sakas D.P., Simos T.E.: Multiderivative methods of eighth algrebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation. J. Comput. Appl. Math. 175(1), 161–172 (2005)

    Google Scholar 

  85. Tselios K., Simos T.E.: Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. J. Comput. Appl. Math. 175(1), 173–181 (2005)

    Google Scholar 

  86. Kalogiratou Z., Simos T.E.: Newton-Cotes formulae for long-time integration. J. Comput. Appl. Math. 158(1), 75–82 (2003)

    Google Scholar 

  87. Kalogiratou Z., Monovasilis T., Simos T.E.: Symplectic integrators for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 83–92 (2003)

    Google Scholar 

  88. Konguetsof A., Simos T.E.: A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 93–106 (2003)

    Google Scholar 

  89. Psihoyios G., Simos T.E.: Trigonometrically fitted predictor-corrector methods for IVPs with oscillating solutions. J. Comput. Appl. Math. 158(1), 135–144 (2003)

    Google Scholar 

  90. Tsitouras Ch., Simos T.E.: Optimized Runge-Kutta pairs for problems with oscillating solutions. J. Comput. Appl. Math. 147(2), 397–409 (2002)

    Google Scholar 

  91. Simos T.E.: An exponentially fitted eighth-order method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 108(1–2), 177–194 (1999)

    Google Scholar 

  92. Simos T.E.: An accurate finite difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 91(1), 47–61 (1998)

    Google Scholar 

  93. Thomas R.M., Simos T.E.: A family of hybrid exponentially fitted predictor-corrector methods for the numerical integration of the radial Schrödinger equation. J. Comput. Appl. Math. 87(2), 215–226 (1997)

    Google Scholar 

  94. Anastassi Z.A., Simos T.E.: Special optimized Runge-Kutta methods for IVPs with oscillating solutions. Int. J. Modern Phys. C 15, 1–15 (2004)

    Google Scholar 

  95. Anastassi Z.A., Simos T.E.: A dispersive-fitted and dissipative-fitted explicit Runge-Kutta method for the numerical solution of orbital problems. New Astron. 10, 31–37 (2004)

    Google Scholar 

  96. Anastassi Z.A., Simos T.E.: A trigonometrically-fitted Runge-Kutta method for the numerical solution of orbital problems. New Astron. 10, 301–309 (2005)

    Google Scholar 

  97. Triantafyllidis T.V., Anastassi Z.A., Simos T.E.: Two optimized Runge-Kutta methods for the solution of the Schr̈inger equation. MATCH Commun. Math. Comput. Chem. 60, 3 (2008)

    Google Scholar 

  98. Anastassi Z.A., Simos T.E.: Trigonometrically fitted fifth order Runge-Kutta methods for the numerical solution of the Schrödinger equation. Math. Comput. Model. 42(7–8), 877–886 (2005)

    Google Scholar 

  99. Anastassi Z.A., Simos T.E.: New trigonometrically fitted six-step symmetric methods for the efficient solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60, 3 (2008)

    Google Scholar 

  100. Panopoulos G.A., Anastassi Z.A., Simos T.E.: Two new optimized eight-step symmetric methods for the efficient solution of the Schrödinger equation and related problems. MATCH Commun. Math. Comput. Chem. 60, 3 (2008)

    Google Scholar 

  101. Anastassi Z.A., Simos T.E.: A six-step P-stable trigonometrically-fitted method for the numerical integration of the radial Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60, 3 (2008)

    Google Scholar 

  102. Z.A. Anastassi, T.E. Simos, A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem. (in press, corrected proof)

  103. Simos T.E., Williams P.S.: A finite-difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79(2), 189–205 (1997)

    Google Scholar 

  104. Avdelas G., Simos T.E.: A generator of high-order embedded P-stable methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 72(2), 345–358 (1996)

    Google Scholar 

  105. Thomas R.M., Simos T.E., Mitsou G.V.: A family of Numerov-type exponentially fitted predictor-corrector methods for the numerical integration of the radial Schrödinger equation. J. Comput. Appl. Math. 67(2), 255–270 (1996)

    Google Scholar 

  106. Simos T.E.: A family of 4-step exponentially fitted predictor-corrector methods for the numerical-integration of the Schrödinger-equation. J. Comput. Appl. Math. 58(3), 337–344 (1995)

    Google Scholar 

  107. Simos T.E.: An explicit 4-step phase-fitted method for the numerical-integration of 2nd-order initial-value problems. J. Comput. Appl. Math. 55(2), 125–133 (1994)

    Google Scholar 

  108. Simos T.E., Dimas E., Sideridis A.B.: A Runge-Kutta-Nyström method for the numerical-integration of special 2nd-order periodic initial-value problems. J. Comput. Appl. Math. 51(3), 317–326 (1994)

    Google Scholar 

  109. Sideridis A.B., Simos T.E.: A low-order embedded Runge-Kutta method for periodic initial-value problems. J. Comput. Appl. Math. 44(2), 235–244 (1992)

    Google Scholar 

  110. Simos T.E., Raptis A.D.: A 4th-order Bessel fitting method for the numerical-solution of the SchrÖdinger-equation. J. Comput. Appl. Math. 43(3), 313–322 (1992)

    Google Scholar 

  111. Simos T.E.: Explicit 2-step methods with minimal phase-lag for the numerical-integration of special 2nd-order initial-value problems and their application to the one-dimensional Schrödinger-equation. J. Comput. Appl. Math. 39(1), 89–94 (1992)

    Google Scholar 

  112. Simos T.E.: A 4-step method for the numerical-solution of the Schrödinger-equation. J. Comput. Appl. Math. 30(3), 251–255 (1990)

    Google Scholar 

  113. Papageorgiou C.D., Raptis A.D.: T.E. Simos, A method for computing phase-shifts for scattering. J. Comput. Appl. Math. 29(1), 61–67 (1990)

    Google Scholar 

  114. Raptis A.D.: Two-step methods for the numerical solution of the Schrödinger equation. Computing 28, 373–378 (1982)

    Google Scholar 

  115. Simos T.E.: A new Numerov-type method for computing eigenvalues and resonances of the radial Schrödinger equation. Int. J. Modern Phys. C-Phys. Comput. 7(1), 33–41 (1996)

    Google Scholar 

  116. Simos T.E.: Predictor corrector phase-fitted methods for Y" = F(X,Y) and an application to the Schrödinger-equation. Int. J. Quantum Chem. 53(5), 473–483 (1995)

    CAS  Google Scholar 

  117. Simos T.E.: Two-step almost P-stable complete in phase methods for the numerical integration of second order periodic initial-value problems. Int. J. Comput. Math. 46, 77–85 (1992)

    Google Scholar 

  118. Corless R.M., Shakoori A., Aruliah D.A., Gonzalez-Vega L.: Barycentric Hermite interpolants for event location in initial-value problems. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 1–16 (2008)

    Google Scholar 

  119. Dewar M.: Embedding a general-purpose numerical library in an interactive environment. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 17–26 (2008)

    Google Scholar 

  120. Kierzenka J., Shampine L.F.: A BVP solver that controls residual and error. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 27–41 (2008)

    Google Scholar 

  121. Knapp R.: A method of lines framework in mathematica. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 43–59 (2008)

    Google Scholar 

  122. Nedialkov N.S., Pryce J.D.: Solving differential algebraic equations by Taylor series (III): the DAETS code. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 61–80 (2008)

    Google Scholar 

  123. Lipsman R.L., Osborn J.E., Rosenberg J.M.: The SCHOL Project at the University of Maryland: using mathematical software in the teaching of Sophomore differential equations. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 81–103 (2008)

    Google Scholar 

  124. Sofroniou M., Spaletta G.: Extrapolation methods in mathematica. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 105–121 (2008)

    Google Scholar 

  125. Spiteri R.J.: Thian-Peng Ter, pythNon: A PSE for the numerical solution of nonlinear algebraic equations. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 123–137 (2008)

    Google Scholar 

  126. Corwin S.P., Thompson S., White S.M.: Solving ODEs and DDEs with impulses. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 139–149 (2008)

    Google Scholar 

  127. Weckesser W.: VFGEN: a code generation tool. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 151–165 (2008)

    Google Scholar 

  128. Wittkopf A.: Automatic code generation and optimization in maple. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 167–180 (2008)

    Google Scholar 

  129. Quinlan D., Tremaine S.: Symmetric multistep methods for the numerical integration of planetary orbits. Astron. J. 100(5), 1694–1700 (1990)

    Google Scholar 

  130. Lambert J., Watson I.: Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Google Scholar 

  131. Simos T., Williams P.: On finite difference methods for the solution of the Schrödinger equation. Comput. Chem. 23, 513–554 (1999)

    CAS  Google Scholar 

  132. Ixaru L.G., Rizea M.: Comparison of some four-step methods for the numerical solution of the Schröodinger equation. Compu. Phys. Commun. 38(3), 329–337 (1985)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Simos.

Additional information

T. E. Simos is a highly cited researcher, active member of the European Academy of Sciences and Arts.

Corresponding member of the European Academy of Sciences, corresponding member of European Academy of Arts, Sciences and Humanities.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlachos, D.S., Anastassi, Z.A. & Simos, T.E. High order multistep methods with improved phase-lag characteristics for the integration of the Schrödinger equation. J Math Chem 46, 692–725 (2009). https://doi.org/10.1007/s10910-008-9509-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-008-9509-x

Keywords

Navigation