Skip to main content
Log in

Two optimized symmetric eight-step implicit methods for initial-value problems with oscillating solutions

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we present two optimized eight-step symmetric implicit methods with phase-lag order ten and infinite (phase-fitted). The methods are constructed to solve numerically the radial time-independent Schrödinger equation with the use of the Woods–Saxon potential. They can also be used to integrate related IVPs with oscillating solutions such as orbital problems. We compare the two new methods to some recently constructed optimized methods from the literature. We measure the efficiency of the methods and conclude that the new method with infinite order of phase-lag is the most efficient of all the compared methods and for all the problems solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.E. Simos, Chemical Modelling—Applications and Theory, vol.1, Specialist Periodical Reports (The Royal Society of Chemistry, Cambridge, 2000)

  2. Lyche T.: Chebyshevian multistep methods for ordinary differential eqations. Num. Math. 19, 65–75 (1972)

    Google Scholar 

  3. Chawla M.M., Rao P.S.: A Numerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems. II. Explicit method. J. Comput. Appl. Math. 15, 329 (1986)

    Google Scholar 

  4. Henrici P.: Discrete Variable Methods in Ordinary Diferential Equations. John Wiley and Sons, New York, USA (1962)

    Google Scholar 

  5. Raptis D., Allison A.C.: Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1 (1978)

    Google Scholar 

  6. Kalogiratou Z., Simos T.E.: A P-stable exponentially-fitted method for the numerical integration of the Schrödinger equation. Appl. Math. Comput. 112, 99–112 (2000)

    Google Scholar 

  7. Ixaru L.Gr., Rizea M.: A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comp. Phys. Comm. 19, 23–27 (1980)

    Google Scholar 

  8. Lambert J.D., Watson I.A.: Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Google Scholar 

  9. Coleman J.P., Ixaru L.Gr.: P-stability and exponential-fitting methods for y′′ = f(x, y). IMA J. Numer. Anal. 16, 179–199 (1996)

    Google Scholar 

  10. Franco J.M., Palacios M.: J. Comput. Appl. Math. 30, 1 (1990)

    Google Scholar 

  11. Simos T.E.: P-stable four-step exponentially-fitted method for the numerical integration of the Schrödinger equation. CoLe 1(1), 37–45 (2005)

    Google Scholar 

  12. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae for numerical integration of the Schrödinger equation. CoLe 1(3), 45–57 (2007)

    Google Scholar 

  13. Simos T.E.: A numerov-type method for the numerical-solution of the radial Schrödinger-equation. Appl. Numer. Math. 7(2), 201–206 (1991)

    Google Scholar 

  14. Simos T.E.: Some new 4-step exponential-fitting methods for the numerical-solution of the radial Schrödinger-equation. IMA J. Numer. Anal. 11(3), 347–356 (1991)

    Google Scholar 

  15. Simos T.E.: A high-order predictor-corrector method for periodic IVPs. Appl. Math. Lett. 6(5), 9–12 (1993)

    Google Scholar 

  16. L.Gr. Ixaru, M. Micu, Topics in Theoretical Physics (Central Institute of Physics, Bucharest, 1978)

  17. Landau L.D., Lifshitz F.M.: Quantum Mechanics. Pergamon, New York (1965)

    Google Scholar 

  18. I. Prigogine, S. Rice (eds.), Advances in Chemical Physics, vol. 93, New Methods in Computational Quantum Mechanics (John Wiley & Sons, 1997)

  19. Herzberg G.: Spectra of Diatomic Molecules. Van Nostrand, Toronto (1950)

    Google Scholar 

  20. T.E. Simos, in Atomic Structure Computations in Chemical Modelling: Applications and Theory, ed. by A. Hinchliffe (The Royal Society of Chemistry, UMIST, 2000), pp. 38–142

  21. T.E. Simos, Numerical methods for 1D, 2D and 3D differential equations arising in chemical problems, Chemical Modelling: Application and Theory, vol. 2 (The Royal Society of Chemistry, 2002) pp. 170–270

  22. Simos T.E., Williams P.S.: On finite difference methods for the solution of the Schrödinger equation. Comput. Chem. 23, 513–554 (1999)

    CAS  Google Scholar 

  23. T.E. Simos, Numerical Solution of Ordinary Differential Equations with Periodical Solution. Doctoral Dissertation, National Technical University of Athens, Greece, 1990 (in Greek)

  24. Konguetsof A., Simos T.E.: On the construction of exponentially-fitted methods for the numerical solution of the Schrödinger equation. J. Comput. Methods Sci. Eng. 1, 143–165 (2001)

    Google Scholar 

  25. Raptis A.D., Allison A.C.: Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)

    Google Scholar 

  26. Raptis A.D.: Exponential multistep methods for ordinary differential equations. Bull. Greek Math. Soc. 25, 113–126 (1984)

    Google Scholar 

  27. Ixaru L.Gr.: Numerical Methods for Differential Equations and Applications. Reidel, Dordrecht (1984)

    Google Scholar 

  28. Simos T.E., Williams P.S.: A new Runge-Kutta–Nystrom method with phase-lag of order infinity for the numerical solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 45, 123–137 (2002)

    CAS  Google Scholar 

  29. Simos T.E.: Multiderivative methods for the numerical solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 45, 7–26 (2004)

    Google Scholar 

  30. Raptis A.D.: Exponentially-fitted solutions of the eigenvalue Shrödinger equation with automatic error control. Comput. Phys. Commun. 28, 427–431 (1983)

    Google Scholar 

  31. Raptis A.D.: On the numerical solution of the Schrodinger equation. Comput. Phys. Commun. 24, 1–4 (1981)

    Google Scholar 

  32. Raptis A.D., Simos T.E.: A four-step phase-fitted method for the numerical integration of second order initial-value problem. BIT 31, 160–168 (1991)

    Google Scholar 

  33. Chawla M.M.: Uncoditionally stable Noumerov-type methods for second order differential equations. BIT 23, 541–542 (1983)

    Google Scholar 

  34. Chawla M.M., Rao P.S.: A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems. J. Comput. Appl. Math. 11(3), 277–281 (1984)

    Google Scholar 

  35. L.Gr. Ixaru, G.V. Berghe, Exponential Fitting, Series on Mathematics and its Applications, vol. 568 (Kluwer Academic Publisher, The Netherlands, 2004)

  36. Ixaru L.Gr., Rizea M.: Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)

    CAS  Google Scholar 

  37. Anastassi Z.A., Simos T.E.: A family of exponentially-fitted Runge-Kutta methods with exponential order up to three for the numerical solution of the Schrödinger equation. J. Math. Chem. 41(1), 79–100 (2007)

    CAS  Google Scholar 

  38. Monovasilis T., Kalogiratou Z., Simos T.E.: Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 40(3), 257–267 (2006)

    CAS  Google Scholar 

  39. Psihoyios G., Simos T.E.: The numerical solution of the radial Schrödinger equation via a trigonometrically fitted family of seventh algebraic order predictor–corrector methods. J. Math. Chem. 40(3), 269–293 (2006)

    CAS  Google Scholar 

  40. Simos T.E.: A four-step exponentially fitted method for the numerical solution of the Schrödinger equation. J. Math. Chem. 40(3), 305–318 (2006)

    CAS  Google Scholar 

  41. Monovasilis T., Kalogiratou Z., Simos T.E.: Exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 37(3), 263–270 (2005)

    CAS  Google Scholar 

  42. Kalogiratou Z., Monovasilis T., Simos T.E.: Numerical solution of the two-dimensional time independent Schrödinger equation with Numerov-type methods. J. Math. Chem. 37(3), 271–279 (2005)

    CAS  Google Scholar 

  43. Anastassi Z.A., Simos T.E.: Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 281–293 (2005)

    CAS  Google Scholar 

  44. Psihoyios G., Simos T.E.: Sixth algebraic order trigonometrically fitted predictor–corrector methods for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 37(3), 295–316 (2005)

    CAS  Google Scholar 

  45. Sakas D.P., Simos T.E.: A family of multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 317–331 (2005)

    CAS  Google Scholar 

  46. Simos T.E.: Exponentially-fitted multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 36(1), 13–27 (2004)

    CAS  Google Scholar 

  47. Tselios K., Simos T.E.: Symplectic methods of fifth order for the numerical solution of the radial Shrodinger equation. J. Math. Chem. 35(1), 55–63 (2004)

    CAS  Google Scholar 

  48. Simos T.E.: A family of trigonometrically-fitted symmetric methods for the efficient solution of the Schrödinger equation and related problems. J. Math. Chem. 34(1–2), 39–58 (2003)

    CAS  Google Scholar 

  49. Tselios K., Simos T.E.: Symplectic methods for the numerical solution of the radial Shrödinger equation. J. Math. Chem. 34(1–2), 83–94 (2003)

    CAS  Google Scholar 

  50. Vigo-Aguiar J., Simos T.E.: Family of twelve steps exponential fitting symmetric multistep methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 32(3), 257–270 (2002)

    CAS  Google Scholar 

  51. Avdelas G., Kefalidis E., Simos T.E.: New P-stable eighth algebraic order exponentially-fitted methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 31(4), 371–404 (2002)

    CAS  Google Scholar 

  52. Simos T.E., Vigo-Aguiar J.: Symmetric eighth algebraic order methods with minimal phase-lag for the numerical solution of the Schrödinger equation. J. Math. Chem. 31(2), 135–144 (2002)

    CAS  Google Scholar 

  53. Z. Kalogiratou, T.E. Simos, Construction of trigonometrically and exponentially fitted Runge-Kutta–Nystrom methods for the numerical solution of the Schrödinger equation and related problems a method of 8th algebraic order. J. Math. Chem. 31(2), 211–232

  54. Simos T.E., Vigo-Aguiar J.: A modified phase-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. J. Math. Chem. 30(1), 121–131 (2001)

    CAS  Google Scholar 

  55. Avdelas G., Konguetsof A., Simos T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 1. Development of the basic method. J. Math. Chem. 29(4), 281–291 (2001)

    CAS  Google Scholar 

  56. Avdelas G., Konguetsof A., Simos T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 2. Development of the generator; optimization of the generator and numerical results. J. Math. Chem. 29(4), 293–305 (2001)

    CAS  Google Scholar 

  57. Vigo-Aguiar J., Simos T.E.: A family of P-stable eighth algebraic order methods with exponential fitting facilities. J. Math. Chem. 29(3), 177–189 (2001)

    Google Scholar 

  58. Simos T.E.: A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical solution of the Schrödinger equation. J. Math. Chem. 27(4), 343–356 (2000)

    CAS  Google Scholar 

  59. Avdelas G., Simos T.E.: Embedded eighth order methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 26(4), 327–341 (1999)

    Google Scholar 

  60. Simos T.E.: A family of P-stable exponentially-fitted methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 25(1), 65–84 (1999)

    CAS  Google Scholar 

  61. Simos T.E.: Some embedded modified Runge-Kutta methods for the numerical solution of some specific Schrödinger equations. J. Math. Chem. 24(1–3), 23–37 (1998)

    CAS  Google Scholar 

  62. Simos T.E.: Eighth order methods with minimal phase-lag for accurate computations for the elastic scattering phase-shift problem. J. Math. Chem. 21(4), 359–372 (1997)

    CAS  Google Scholar 

  63. Amodio P., Gladwell I., Romanazzi G.: Numerical solution of general bordered ABD linear systems by cyclic reduction. JNAIAM J. Numer. Anal. Ind. Appl. Math. 1(1), 5–12 (2006)

    Google Scholar 

  64. Capper S.D., Cash J.R., Moore D.R.: Lobatto-Obrechkoff formulae for 2nd order two-point boundary value problems. JNAIAM J. Numer. Anal. Ind. Appl. Math. 1(1), 13–25 (2006)

    Google Scholar 

  65. Capper S.D., Moore D.R.: On high order MIRK schemes and Hermite-Birkhoff interpolants. JNAIAM J. Numer. Anal. Ind. Appl. Math. 1(1), 27–47 (2006)

    Google Scholar 

  66. Cash J.R., Sumarti N., Abdulla T.J., Vieira I.: The derivation of interpolants for nonlinear two-point boundary value problems. JNAIAM J. Numer. Anal. Ind. Appl. Math. 1(1), 49–58 (2006)

    Google Scholar 

  67. Cash J.R., Girdlestone S.: Variable step Runge-Kutta–Nyström methods for the numerical solution of reversible systems. JNAIAM J. Numer. Anal. Ind. Appl. Math. 1(1), 59–80 (2006)

    Google Scholar 

  68. Cash J.R., Mazzia F.: Hybrid mesh selection algorithms based on conditioning for two-point boundary value problems. JNAIAM J. Numer. Anal. Ind. Appl. Math. 1(1), 81–90 (2006)

    Google Scholar 

  69. Iavernaro F., Mazzia F., Trigiante D.: Stability and conditioning in numerical analysis. JNAIAM J. Numer. Anal. Ind. Appl. Math. 1(1), 91–112 (2006)

    Google Scholar 

  70. Iavernaro F., Trigiante D.: Discrete conservative vector fields induced by the trapezoidal method. JNAIAM J. Numer. Anal. Ind. Appl. Math. 1(1), 113–130 (2006)

    Google Scholar 

  71. Mazzia F., Sestini A., Trigiante D.: BS linear multistep methods on non-uniform meshes. JNAIAM J. Numer. Anal. Ind. Appl. Math. 1(1), 131–144 (2006)

    Google Scholar 

  72. Shampine L.F., Muir P.H., Xu H.: A user-friendly fortran BVP solver. JNAIAM J. Numer. Anal. Ind. Appl. Math. 1(2), 201–217 (2006)

    Google Scholar 

  73. Vanden Berghe G., Van Daele M.: Exponentially-fitted Störmer/Verlet methods. JNAIAM J. Numer. Anal. Ind. Appl. Math. 1(3), 241–255 (2006)

    Google Scholar 

  74. Aceto L., Pandolfi R., Trigiante D.: Stability analysis of linear multistep methods via polynomial type variation. JNAIAM J. Numer. Anal. Ind. Appl. Math. 2(1–2), 1–9 (2007)

    Google Scholar 

  75. Psihoyios G.: A block implicit advanced step-point (BIAS) algorithm for stiff differential systems. Comput. Lett. 2(1–2), 51–58 (2006)

    Google Scholar 

  76. Enright W.H.: On the use of ‘arc length’ and ‘defect’ for mesh selection for differential equations. Comput. Lett. 1(2), 47–52 (2005)

    Google Scholar 

  77. Simos T.E.: Stabilization of a four-step exponentially-fitted method and its application to the Schrödinger equation. Int. J. Modern Phys. C 18(3), 315–328 (2007)

    Google Scholar 

  78. Wang Z.: P-stable linear symmetric multistep methods for periodic initial-value problems. Comput. Phys. Commun. 171, 162–174 (2005)

    CAS  Google Scholar 

  79. Simos T.E.: A Runge-Kutta Fehlberg method with phase-lag of order infinity for initial value problems with oscillating solution. Comput. Math. Appl. 25, 95–101 (1993)

    Google Scholar 

  80. Simos T.E.: Runge-Kutta interpolants with minimal phase-lag. Comput. Math. Appl. 26, 43–49 (1993)

    Google Scholar 

  81. Simos T.E.: Runge-Kutta–Nyström interpolants for the numerical integration of special second-order periodic initial-value problems. Comput. Math. Appl. 26, 7–15 (1993)

    Google Scholar 

  82. Simos T.E., Mitsou G.V.: A family of four-step exponential fitted methods for the numerical integration of the radial Schrödinger equation. Comput. Math. Appl. 28, 41–50 (1994)

    Google Scholar 

  83. Simos T.E., Mousadis G.: A two-step method for the numerical solution of the radial Schrödinger equation. Comput. Math. Appl. 29, 31–37 (1995)

    Google Scholar 

  84. Avdelas G., Simos T.E.: Block Runge-Kutta methods for periodic initial-value problems. Comput. Math. Appl. 31, 69–83 (1996)

    Google Scholar 

  85. Avdelas G., Simos T.E.: Embedded methods for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 31, 85–102 (1996)

    Google Scholar 

  86. Papakaliatakis G., Simos T.E.: A new method for the numerical solution of fourth order BVPs with oscillating solutions. Comput. Math. Appl. 32, 1–6 (1996)

    Google Scholar 

  87. Simos T.E.: An extended Numerov-type method for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 33, 67–78 (1997)

    Google Scholar 

  88. Simos T.E.: A new hybrid imbedded variable-step procedure for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 36, 51–63 (1998)

    Google Scholar 

  89. Simos T.E.: Bessel and Neumann fitted methods for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 42, 833–847 (2001)

    Google Scholar 

  90. Konguetsof A., Simos T.E.: An exponentially-fitted and trigonometrically-fitted method for the numerical solution of periodic initial-value problems. Comput. Math. Appl. 45, 547–554 (2003)

    Google Scholar 

  91. Anastassi Z.A., Simos T.E.: An optimized Runge-Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175(1), 1–9 (2005)

    Google Scholar 

  92. Psihoyios G., Simos T.E.: A fourth algebraic order trigonometrically fitted predictor–corrector scheme for IVPs with oscillating solutions. J. Comput. Appl. Math. 175(1), 137–147 (2005)

    Google Scholar 

  93. Sakas D.P., Simos T.E.: Multiderivative methods of eighth algrebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation. J. Comput. Appl. Math. 175(1), 161–172 (2005)

    Google Scholar 

  94. Tselios K., Simos T.E.: Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. J. Comput. Appl. Math. 175(1), 173–181 (2005)

    Google Scholar 

  95. Kalogiratou Z., Simos T.E.: Newton–Cotes formulae for long-time integration. J. Comput. Appl. Math. 158(1), 75–82 (2003)

    Google Scholar 

  96. Kalogiratou Z., Monovasilis T., Simos T.E.: Symplectic integrators for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 83–92 (2003)

    Google Scholar 

  97. Konguetsof A., Simos T.E.: A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 93–106 (2003)

    Google Scholar 

  98. Psihoyios G., Simos T.E.: Trigonometrically fitted predictor–corrector methods for IVPs with oscillating solutions. J. Comput. Appl. Math. 158(1), 135–144 (2003)

    Google Scholar 

  99. Tsitouras Ch., Simos T.E.: Optimized Runge-Kutta pairs for problems with oscillating solutions. J. Comput. Appl. Math. 147(2), 397–409 (2002)

    Google Scholar 

  100. Simos T.E.: An exponentially fitted eighth-order method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 108(1–2), 177–194 (1999)

    Google Scholar 

  101. Simos T.E.: An accurate finite difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 91(1), 47–61 (1998)

    Google Scholar 

  102. Thomas R.M., Simos T.E.: A family of hybrid exponentially fitted predictor–corrector methods for the numerical integration of the radial Schrödinger equation. J. Comput. Appl. Math. 87(2), 215–226 (1997)

    Google Scholar 

  103. Anastassi Z.A., Simos T.E.: Special optimized Runge-Kutta methods for IVPs with oscillating solutions. Int. J. Modern Phys. C 15, 1–15 (2004)

    Google Scholar 

  104. Anastassi Z.A., Simos T.E.: A dispersive-fitted and dissipative-fitted explicit Runge-Kutta method for the numerical solution of orbital problems. New Astronomy 10, 31–37 (2004)

    Google Scholar 

  105. Anastassi Z.A., Simos T.E.: A Trigonometrically-fitted Runge-Kutta method for the numerical solution of orbital problems. New Astronomy 10, 301–309 (2005)

    Google Scholar 

  106. Triantafyllidis T.V., Anastassi Z.A., Simos T.E.: Two optimized Runge-Kutta methods for the solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60, 3 (2008)

    Google Scholar 

  107. Anastassi Z.A., Simos T.E.: Trigonometrically fitted fifth order Runge-Kutta methods for the numerical solution of the Schrödinger equation. Math. Comput. Model. 42(7–8), 877–886 (2005)

    Google Scholar 

  108. Anastassi Z.A., Simos T.E.: New trigonometrically fitted six-step symmetric methods for the efficient solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60, 3 (2008)

    Google Scholar 

  109. Panopoulos G.A., Anastassi Z.A., Simos T.E.: Two new optimized eight-step symmetric methods for the efficient solution of the Schrödinger equation and related problems. MATCH Commun. Math. Comput. Chem. 60, 3 (2008)

    Google Scholar 

  110. Anastassi Z.A., Simos T.E.: A six-step P-stable trigonometrically-fitted method for the numerical integration of the radial Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60, 3 (2008)

    Google Scholar 

  111. Z.A. Anastassi, T.E. Simos, A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem., in Press

  112. Simos T.E., Williams P.S.: A finite-difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79(2), 189–205 (1997)

    Google Scholar 

  113. Avdelas G., Simos T.E.: A generator of high-order embedded P-stable methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 72(2), 345–358 (1996)

    Google Scholar 

  114. Thomas R.M., Simos T.E., Mitsou G.V.: A family of Numerov-type exponentially fitted predictor–corrector methods for the numerical integration of the radial Schrödinger equation. J. Comput. Appl. Math. 67(2), 255–270 (1996)

    Google Scholar 

  115. Simos T.E.: A family of 4-step exponentially fitted predictor–corrector methods for the numerical-integration of the Schrödinger equation. J. Comput. Appl. Math. 58(3), 337–344 (1995)

    Google Scholar 

  116. Simos T.E.: An explicit 4-step phase-fitted method for the numerical-integration of 2nd-order initial-value problems. J. Comput. Appl. Math. 55(2), 125–133 (1994)

    Google Scholar 

  117. Simos T.E., Dimas E., Sideridis A.B.: A Runge-Kutta–Nyström method for the numerical-integration of special 2nd-order periodic initial-value problems. J. Comput. Appl. Math. 51(3), 317–326 (1994)

    Google Scholar 

  118. Sideridis A.B., Simos T.E.: A low-order embedded Runge-Kutta method for periodic initial-value problems. J. Comput. Appl. Math. 44(2), 235–244 (1992)

    Google Scholar 

  119. Simos T.E., Raptis A.D.: A 4th-order bessel fitting method for the numerical-solution of the Schrödinger-equation. J. Comput. Appl. Math. 43(3), 313–322 (1992)

    Google Scholar 

  120. Simos T.E.: Explicit 2-step methods with minimal phase-lag for the numerical-integration of special 2nd-order initial-value problems and their application to the one-dimensional Schrödinger-equation. J. Comput. Appl. Math. 39(1), 89–94 (1992)

    Google Scholar 

  121. Simos T.E.: A 4-step method for the numerical-solution of the Schrödinger-equation. J. Comput. Appl. Math. 30(3), 251–255 (1990)

    Google Scholar 

  122. Papageorgiou C.D., Raptis A.D., Simos T.E.: A method for computing phase-shifts for scattering. J. Comput. Appl. Math. 29(1), 61–67 (1990)

    Google Scholar 

  123. Raptis A.D.: Two-step methods for the numerical solution of the Schrödinger equation. Computing 28, 373–378 (1982)

    Google Scholar 

  124. Simos T.E.: A new Numerov-type method for computing eigenvalues and resonances of the radial Schrödinger equation. Int. J. Modern Phys. C Phys. Comput. 7(1), 33–41 (1996)

    Google Scholar 

  125. Simos T.E.: Predictor corrector phase-fitted methods for Y′′ = F (X,Y) and an application to the Schrödinger-equation, Int. J. Quant. Chem. 53(5), 473–483 (1995)

    CAS  Google Scholar 

  126. Simos T.E.: Two-step almost P-stable complete in phase methods for the numerical integration of second order periodic initial-value problems. Int. J. Comput. Math. 46, 77–85 (1992)

    Google Scholar 

  127. Corless R.M., Shakoori A., Aruliah D.A., Gonzalez-Vega L.: Barycentric hermite interpolants for event location in initial-value problems. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 1–16 (2008)

    Google Scholar 

  128. Dewar M.: Embedding a general-purpose numerical library in an interactive environment. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 17–26 (2008)

    Google Scholar 

  129. Kierzenka J., Shampine L.F.: A BVP solver that controls residual and error. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 27–41 (2008)

    Google Scholar 

  130. Knapp R.: A method of lines framework in mathematica. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 43–59 (2008)

    Google Scholar 

  131. Nedialkov N.S., Pryce J.D.: Solving differential algebraic equations by Taylor series (III): the DAETS code. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 61–80 (2008)

    Google Scholar 

  132. Lipsman R.L., Osborn J.E., Rosenberg J.M.: The SCHOL project at the University of Maryland: Using mathematical software in the teaching of sophomore differential equations. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 81–103 (2008)

    Google Scholar 

  133. Sofroniou M., Spaletta G.: Extrapolation methods in mathematica. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 105–121 (2008)

    Google Scholar 

  134. Spiteri R.J., Ter T.-P.: pythNon: A PSE for the numerical solution of nonlinear algebraic equations. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 123–137 (2008)

    Google Scholar 

  135. Corwin S.P., Thompson S., White S.M.: Solving ODEs and DDEs with impulses. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 139–149 (2008)

    Google Scholar 

  136. Weckesser W.: VFGEN: A code generation tool. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 151–165 (2008)

    Google Scholar 

  137. Wittkopf A.: Automatic code generation and optimization in maple. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 167–180 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Simos.

Additional information

T. E. Simos—Highly Cited Researcher, Active Member of the European Academy of Sciences and Arts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panopoulos, G.A., Anastassi, Z.A. & Simos, T.E. Two optimized symmetric eight-step implicit methods for initial-value problems with oscillating solutions. J Math Chem 46, 604–620 (2009). https://doi.org/10.1007/s10910-008-9506-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-008-9506-0

Keywords

Navigation