Skip to main content
Log in

Unequivocal resolution of multiplets in MR spectra for prostate cancer diagnostics achieved by the fast Padé transform

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We perform mathematical modeling with the fast Padé transform (FPT) according to magnetic resonance (MR)-time signals as encoded in vitro from normal glandular and stromal prostate tissue and from prostate cancer. This is one of the most demanding signal processing problems in MR spectroscopy due to the abundance of diagnostically important multiplets (notably doublet and triplet resonances). The FPT provided exact reconstruction at short acquisition times (i.e. using only a fraction of the full signal length) of all the input spectral parameters for the data corresponding to prostate cancer and to normal glandular as well as stromal prostate tissue. This was achieved without any fitting or numerical integration of peak areas. The converged parametric results remained stable at longer partial signal lengths, including the case using the full signal length. The Padé absorption component spectra yielded unequivocal resolution of all the extracted physical resonances, including multiplet resonances and closely overlapping peaks of different metabolites. The capacity of the FPT to resolve and precisely quantify the physical resonances as encountered in normal tissue from two distinct regions of the prostate, as well as in prostate cancer is demonstrated. The spectra from prostate tissues are dense, which suggests that there is a rich array of metabolic information to be gleaned. The FPT is hereby shown to be optimally suited to retrieve that information. The FPT reliably yields the metabolite concentrations that could be of critical importance for distinguishing non-malignant from cancerous prostate tissue. Padé-optimized MRS could clearly aid prostate cancer diagnostics. This line of investigation will continue with experimentally encoded data from normal, hypertrophic and cancerous prostate tissue, in vitro and in vivo. We anticipate that Padé-optimized MRS will improve the specificity as well as sensitivity of MR-based modalities with respect to prostate cancer. This could have an important impact upon timely and accurate diagnosis of this malignancy, as well as aiding decision-making for therapeutic dilemmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ala:

Alanine

au:

Arbitrary units

Cit:

Citrate

Cho:

Choline

Cr:

Creatine

DRE:

Digital rectal examination

FID:

Free induction decay

FFT:

Fast Fourier transform

FPT:

Fast Padé transform

FWHM:

Full width at half maximum

GPC:

Glycerophosphocholine

HLSVD:

Hankel-Lanczos Singular Value Decomposition

HRMAS:

High-resolution magic-angle spinning

Lac:

Lactate

m-Ino:

Myoinositol

MR:

Magnetic resonance

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

MRSI:

Magnetic resonance spectroscopic imaging

PA:

Polyamines

PC:

Phosphocholine

ppm:

Parts per million

PSA:

Prostate specific antigen

s-Ino:

Scyllo-inositol

SNR:

Signal-to-noise ratio

SNS:

Signal-noise separation

Tau:

Taurine

TE:

Echo time

TRUS:

Transurethral ultrasound

TSP:

3-(Trimethylsilyl-) 3,3,2,2-tetradeutero-propionic acid

References

  1. A. Horwich, C. Parker, V. Kataja, ESMO Guidelines Working Group. Prostate cancer: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann. Oncol. 19(Suppl 2), ii45 (2008)

  2. Kundra V., Silverman P.M., Matin S.F., Choi H.: Imaging in oncology from the University of Texas M. D. Anderson Cancer Center: diagnosis, staging, and surveillance of prostate cancer. Am. J. Roentgenol. 189, 830 (2007)

    Article  Google Scholar 

  3. H.L. Scher, in Hyperplastic and Malignant Diseases of the Prostate, ed. by E. Braunwald, A. Fauci, D.L. Kasper, S.L. Hauser, D.L. Longo, J.L. Jameson. Harrison’s Principles of Internal Medicine, 15th edn. (McGraw-Hill, New York, 2001), pp. 608–616

  4. Belkić Dž.: Quantum Mechanical Signal Processing and Spectral Analysis. Institute of Physics Publishing, Bristol (2004)

    Google Scholar 

  5. Bottomley P.A.: The trouble with spectroscopy papers. J. Magn. Reson. Imaging 2, 1 (1992)

    Article  CAS  Google Scholar 

  6. Belkić Dž., Belkić K.: Decisive role of mathematical methods in early cancer diagnostics. J. Math. Chem. 42, 1–35 (2007)

    Article  Google Scholar 

  7. Belkić Dž., Dando P.A., Main J., Taylor H.S.: Three novel high-resolution nonlinear methods for fast signal processing. J. Chem. Phys. 113, 6542 (2000)

    Article  Google Scholar 

  8. Belkić Dž.: Fast Padé Transform (FPT) for magnetic resonance imaging and computerized tomography. Nucl. Instrum. Methods Phys. Res. A 471, 165 (2001)

    Article  Google Scholar 

  9. Belkić Dž.: Strikingly stable convergence of the fast Padé transform (FPT) for high-resolution parametric and non-parametric signal processing of Lorentzian and non-Lorentzian spectra. Nucl. Instrum. Methods Phys. Res. A 525, 366 (2004)

    Article  Google Scholar 

  10. Belkić Dž.: Error analysis through residual frequency spectra in the fast Padé transform (FPT). Nucl. Instrum. Methods Phys. Res. A 525, 379 (2004)

    Article  Google Scholar 

  11. Belkić Dž.: Analytical continuation by numerical means in spectral analysis using the fast Padé transform (FPT). Nucl. Instrum. Methods Phys. Res. A 525, 372 (2004)

    Article  Google Scholar 

  12. Belkić Dž., Belkić K.: The fast Padé transform in magnetic resonance spectroscopy for potential improvements in early cancer diagnostics. Phys. Med. Biol. 50, 4385 (2005)

    Article  Google Scholar 

  13. Belkić Dž.: Exact quantification of time signals in Padé-based magnetic resonance spectroscopy. Phys. Med. Biol. 51, 2633 (2006)

    Article  Google Scholar 

  14. Belkić Dž.: Exponential convergence rate (the spectral convergence) of the fast Padé transform for exact quantification in magnetic resonance spectroscopy. Phys. Med. Biol. 51, 6483 (2006)

    Article  Google Scholar 

  15. Dž. Belkić, K. Belkić, The general concept of signal-noise separation (SNS): mathematical aspects and implementation in magnetic resonance spectroscopy. J. Math. Chem. (2008). doi:10.1007/s10910-007-9344-5

  16. Dž. Belkić, K. Belkić, Unequivocal disentangling genuine from spurious information in time signals: Clinical relevance in cancer diagnostics through magnetic resonance spectroscopy. J. Math. Chem. (2008). doi:10.1007/s10910-007-9337-4

  17. Belkić Dž., Belkić K.: In vivo magnetic resonance spectroscopy by the fast Padé transform. Phys. Med. Biol. 51, 1049 (2006)

    Article  Google Scholar 

  18. M. Froissart, Approximation de Padé: Application à la Physique des Particules Élémentaires, CNRS, RCP, Programme No. 25. Strasburg 9, 1 (1969)

  19. Belkić Dž.: Machine accurate quantification in magnetic resonance spectroscopy. Nucl. Instrum. Methods Phys. Res. A 580, 1034 (2007)

    Google Scholar 

  20. Belkić Dž.: Strikingly stable convergence of the fast Padé transform. J. Comp. Meth. Sci. Eng. 3, 299 (2003)

    Google Scholar 

  21. Belkić Dž.: Padé-based magnetic resonance spectroscopy (MRS). J. Comp. Meth. Sci. Eng. 3, 563 (2003)

    Google Scholar 

  22. Pijnappel W.W.F., van den Boogaart A., de Beer R., van Ormondt D.: SVD-based quantification of magnetic resonance signals. J. Magn. Reson. 97, 122 (1992)

    Google Scholar 

  23. Belkić K.: Resolution performance of the fast Padé transform: potential advantages for magnetic resonance spectroscopy in ovarian cancer diagnostics. Nucl. Instrum. Methods Phys. Res. A 580, 874 (2007)

    Google Scholar 

  24. Belkić Dž., Belkić K.: Mathematical modeling of an NMR chemistry problem in ovarian cancer diagnostics. J. Math. Chem. 43, 395 (2008)

    Article  Google Scholar 

  25. Dž. Belkić, K. Belkić, Exact quantification of time signals from magnetic resonance spectroscopy by the fast Padé transform with applications to breast cancer diagnostics. J. Math. Chem. doi:10.1007/s10910-008-9462-8

  26. Thompson I.M., Pauler D.K., Goodman P.J. et al.: Prevalence of prostate cancer among men with a prostate-specific antigen level  ≤ 4.0 ng per milliliter. N. Engl. J. Med. 350, 2239–2246 (2004)

    Article  CAS  Google Scholar 

  27. Lim L.S., Sherin K.: ACPM Prevention Practice Committee, Screening for prostate cancer in U.S. men: ACPM position statement on preventive practice. Am. J. Prev. Med. 34, 164–170 (2008)

    Article  Google Scholar 

  28. U.S. Preventive Services Task Force Screening for prostate cancer: U.S. Preventive Services Task Force Recommendation Statement. Ann. Intern. Med. 149, 185–191 (2008)

    Google Scholar 

  29. Lin K., Lipsitz R., Miller T., Janakiraman S.: U.S. Preventive Services Task Force Benefits and harms of prostate-specific antigen screening for prostate cancer: an evidence update for the U.S. Preventive Services Task Force. Ann. Intern. Med. 149, 192–199 (2008)

    Google Scholar 

  30. Ornstein D.K., Kang J.: How to improve prostate biopsy detection of prostate cancer. Curr. Urol. Rep. 2, 218–223 (2001)

    Article  CAS  Google Scholar 

  31. Hricak H.: MR imaging and MR spectroscopic imaging in the pre-treatment evaluation of prostate cancer. Br. J. Radiol. 78, S103 (2005)

    Article  Google Scholar 

  32. Huzjan R., Sala E., Hricak H.: Magnetic resonance imaging and magnetic resonance spectroscopic imaging of prostate cancer. Nat. Clin. Pract. Urol. 2, 434 (2005)

    Article  CAS  Google Scholar 

  33. Kwock L., Smith J.K., Castillo M., Ewend M.G., Collichio F., Morris D.E., Bouldin T.W., Cush S.: Clinical role of proton magnetic resonance spectroscopy in oncology: brain, breast and prostate cancer. Lancet Oncol. 7, 859 (2006)

    Article  Google Scholar 

  34. Katz S., Rosen M.: MR imaging and MR spectroscopy in prostate cancer management. Radiol. Clin. N. Am. 44, 723 (2006)

    Article  Google Scholar 

  35. Dhingsa R., Qayyum A., Coakley F.V., Lu Y., Jones K.D., Swanson M.G., Carroll P.R., Hricak H., Kurhanewicz J.: Prostate cancer localization with endorectal MR imaging and MR spectroscopic imaging: effect of clinical data on reader accuracy. Radiology 230, 215 (2004)

    Article  Google Scholar 

  36. Kuranewicz J., Swanson M.G., Nelson S.J., Vigneron D.B.: Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J. Magn. Reson. Imaging 16, 451–463 (2002)

    Article  Google Scholar 

  37. Belkić K.: Molecular Imaging through Magnetic Resonance for Clinical Oncology. Cambridge International Science Publishing, Cambridge, UK (2004)

    Google Scholar 

  38. Kaminogo M., Ishimaru H., Morikawa M., Ochi M., Ushijima R., Tani M., Matsuo Y., Kawakubo J., Shibata S.: Diagnostic potential of short echo time MR spectroscopy of gliomas with single-voxel and point-resolved spatially localised proton spectroscopy of brain. Neuroradiology 43, 353 (2001)

    Article  CAS  Google Scholar 

  39. Garcia-Segura J.M., Sanchez-Chapado M., Ibarburen C., Viano J., Angulo J.C., Gonzalez J., Rodriguez-Vallejo J.M.: In vivo proton magnetic resonance spectroscopy of disease prostate: spectroscopic features of malignant versus benign pathology. Magn. Reson. Imaging 17, 755 (1999)

    Article  CAS  Google Scholar 

  40. Swindle P., McCredie S., Russell P.: Pathologic characterization of human prostate tissue with proton MR spectroscopy. Radiology 228, 144–151 (2003)

    Article  Google Scholar 

  41. Swanson M.G., Vigneron D.B., Tabatabai Z.L. et al.: Proton HR-MAS spectroscopy and quantitative pathologic analysis of MRI/3D-MRSI-targeted postsurgical prostate tissues. Magn. Reson. Med. 50, 944 (2003)

    Article  CAS  Google Scholar 

  42. Swanson M.G., Zektzer A.S., Tabatabai Z.L., Simko J., Jarso S., Keshari K.R., Schmitt L., Carroll P.R., Shinohara K., Vigneron D.B., Kurhanewicz J.: Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Magn. Reson. Med. 55, 1257 (2006)

    Article  CAS  Google Scholar 

  43. van der Veen J.W., de Beer R., Luyten P.R., van Ormondt D.: Accurate quantification of in vivo 31P NMR signals using the variable projection method and prior knowledge. Magn. Reson. Med. 6, 92 (1988)

    Article  Google Scholar 

  44. Vanhamme L., van den Boogaart A., van Haffel S.: Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J. Magn. Reson. 29, 35–43 (1997)

    Article  Google Scholar 

  45. Provencher S.W.: Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med. 30, 672 (1993)

    Article  CAS  Google Scholar 

  46. Nicholson J.K., Wilson I.D.: High resolution proton magnetic resonance spectroscopy of biological fluids. Prog. NMR Spectrosc. 21, 1245 (1989)

    Google Scholar 

  47. Dž. Belkić, Exact signal-noise separation by Froissart doublets in the Fast Padé transform for magnetic resonance spectroscopy. Adv Quantum Chem. 56 (2008, in press)

  48. Aboagye E.O., Bhujwalla Z.M.: Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Res. 59, 80 (1999)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dževad Belkić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belkić, D., Belkić, K. Unequivocal resolution of multiplets in MR spectra for prostate cancer diagnostics achieved by the fast Padé transform. J Math Chem 45, 819–858 (2009). https://doi.org/10.1007/s10910-008-9484-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-008-9484-2

Keywords

Navigation