Skip to main content
Log in

Computational modelling of the YAG synthesis

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Mathematical and numerical models of the yttrium aluminium garnet (YAG) synthesis are presented in the article. The models allow the effective computer simulation of the YAG synthesis. The synthesis by sol–gel and solid-state reaction methods is considered in the article. The question concerning the reasons for the observed changes in the preparation temperature by changing synthesis method is answered. The inverse modelling problem is solved: using known experimental data (synthesis time, dimensions of reactants) the unknown input parameters of the model (diffusion and reaction rate coefficients) are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aichele T., Lorenz T., Hergt R., Gornert P.: Cryst. Res. Technol. 38, 575 (2003)

    Article  CAS  Google Scholar 

  2. Bates J.L., Garnier J.E.: J. Am. Ceram. Soc. 64, C–138 (1981)

    Article  Google Scholar 

  3. Brown M.E.: Introduction to Thermal Analysis, Techniques and Applications. Chapman and Hall, London (1988)

    Google Scholar 

  4. Chadzynski G.W., Kutarov V.V., Staszczuk P.: J. Therm. Anal. Calorim. 76, 633 (2004)

    Article  CAS  Google Scholar 

  5. Dong J., Deng P., Xu J.: Optics Commun. 170, 255 (1999)

    Article  CAS  Google Scholar 

  6. Frade J.R., Cable M.: J. Mater. Sci. 32, 2727 (1997)

    Article  CAS  Google Scholar 

  7. Galwey A.K., Brown M.E.: Thermochim. Acta 386, 91 (2002)

    Article  CAS  Google Scholar 

  8. Garskaite E., Jasaitis D., Kareiva A.: J. Serb. Chem. Soc. 68, 677 (2003)

    Article  CAS  Google Scholar 

  9. George J., Varghese G.: Liesegang patterns: estimation of diffusion coefficient and a plausible justification for colloid explanation. Colloid Polym. Sci. 280(12), 1131–1136 (2002)

    CAS  Google Scholar 

  10. Guo Q.Z., Subramanian V.R., Weidner J.W., White R.E.: Estimation of diffusion coefficient of lithium in carbon using AC impedance technique. J. Electrochem. Soc. 149(3), A307–A318 (2002)

    Article  CAS  Google Scholar 

  11. Harlan C.J., Kareiva A., Macqueen D.B., Cook R., Barron A.R.: Adv. Mater. 9, 68 (1997)

    Article  CAS  Google Scholar 

  12. Hsu W.P., Lo P.Y., Kwei T.K., Myerson A.S.: Parameter-estimation for analysis of vapor diffusion in polymers. Polym. Eng. Sci. 34(16), 1250–1253 (1994)

    Article  CAS  Google Scholar 

  13. Ikesue A., Yoshida K., Kamata K.: J. Am. Ceram. Soc. 79, 507 (1996)

    Article  CAS  Google Scholar 

  14. Kaczmarek S.M., Domianiak-Dzik G., Ryba-Romanowski W., Kisielewski J., Wojtkowska J.: Cryst. Res. Technol. 34, 1031 (1999)

    Article  CAS  Google Scholar 

  15. King B.H., Halloran J.W.: J. Am. Ceram. Soc. 78, 2141 (1995)

    Article  CAS  Google Scholar 

  16. Leleckaite A., Kareiva A.: Opt. Mater 26, 123 (2004)

    Article  CAS  Google Scholar 

  17. Liu Y., Zhang Z.F., King B., Halloran J., Laine R.M.: J. Am. Ceram. Soc. 79, 385 (1996)

    Article  CAS  Google Scholar 

  18. Malinowski M., Kaczkan M., Wnuk A., Szufliska M.: J. Lumin. 106, 269 (2004)

    Article  CAS  Google Scholar 

  19. Manalert R., Rahaman M.N.: J. Mater. Sci. 31, 3453 (1996)

    CAS  Google Scholar 

  20. Mourad M., Hemati M., Laguerie C.: A new correlation for the estimation of moisture diffusivity in corn kernels from drying kinetics. Drying Technol. 14(3–4), 873–894 (1996)

    CAS  Google Scholar 

  21. Muliuoliene I., Mathur S., Jasaitis D., Shen H., Sivakov V., Rapalaviciute R., Beganskiene A., Kareiva A.: Opt. Mater. 22, 241 (2003)

    Article  CAS  Google Scholar 

  22. Pullar R.C., Taylor M.D., Bhattacharya A.K.: J. Eur. Ceram. Soc. 19, 1747 (1999)

    Article  CAS  Google Scholar 

  23. Rao R.V.G., Bandyopadhyay U., Venkatesh R.: A new approach in the estimation of diffusion-coefficient and its pressure derivative in liquids. Physica Status Solidi B-Basic Res. 181(1), K1–K5 (1994)

    CAS  Google Scholar 

  24. A.A. Samarskij, Theory of Finite Difference Schemes (Dekker, 2002)

  25. Sun D., H. Li, X. Duan, H. Sun, Z. Wang, X. Wei, H. Xu, C. Luan, D. Xu, M. Lv: J. All. Comp. 379, L1 (2004)

    Article  CAS  Google Scholar 

  26. H. Takaba, T. Suzuki, S. Nakao, Estimation of diffusion coefficient and permeance of aromatic molecules in silicalite and MgZSM-5 using quantum calculation and dynamic Monte Carlo simulation. Fluid Phase Equilib. 219(1), 11–18 (2004)

    Article  CAS  Google Scholar 

  27. Tanaka H.: Thermochim. Acta 267, 29 (1995)

    Article  CAS  Google Scholar 

  28. Tantemsapya N., Meegoda J.N.: Estimation of diffusion coefficient of chromium in colloidal silica using digital photography. Environ. Sci. Technol. 38(14), 3950–3957 (2004)

    CAS  Google Scholar 

  29. C.W. Thiel, H. Cruguel, Y. Sun, G.J. Lapeyre, R.M. Macfarlane, R.W. Equall, R.L. Cone, J. Lumin. 94–95, 1 (2001)

    Google Scholar 

  30. T. Tsuda, S. Kitagawa, T. Ono, M. Maeda, Novel instrumentation for measurement of diffusion coefficient by capillary zone electrophoresis and its application to aqua lanthanide ions. J. Capillary Electrophor. 4(3), 113–116 (1997)

    CAS  Google Scholar 

  31. Vahdat N.: Estimation of diffusion-coefficient for solute polymer systems. J. Appl. Polym. Sci. 42(12), 3165–3171 (1991)

    Article  CAS  Google Scholar 

  32. Veith M., Mathur S., Kareiva A., Jilavi M., Zimmer M., Huch V.: J. Mater. Chem. 9, 3069 (1999)

    Article  CAS  Google Scholar 

  33. Vyazovkin S., Wight C.A.: Ann. Rev. Physic. Chem. 48, 125 (1997)

    Article  CAS  Google Scholar 

  34. Wuister S.F., Donega C.D., Meijerink A.: Phys. Chem. Chem. Phys. 6, 1633 (2004)

    Article  CAS  Google Scholar 

  35. M. Yada, M. Ohya, M. Machida, T. Kijima, Chem. Commun. 1941 (1998)

  36. Yang J.M., Jeng S.M., Chang S.: J. Am. Ceram. Soc. 79, 1218 (1996)

    Article  CAS  Google Scholar 

  37. Zhang X., Liu H., He W., Wang J., Li X., Boughton R.I.: J. All. Comp. 372, 300 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Lapcun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanauskas, F., Kareiva, A. & Lapcun, B. Computational modelling of the YAG synthesis. J Math Chem 46, 427–442 (2009). https://doi.org/10.1007/s10910-008-9468-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-008-9468-2

Keywords

Navigation