Skip to main content
Log in

Communication-theory perspective on valence-bond theory

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The information-theoretic (IT) approach to the electronic structure of molecules, called the Communication Theory of the chemical bond, is used to explore the entropy/information “bond-orders” of the system Valence-Bond (VB) structures, and their covalent/ionic composition. The molecular communication channel in atomic resolution is interpreted as the ensemble-average of the elementary information networks corresponding to the system elementary VB structures, with the probability-weights generated by the coefficients of the familiar VB expansion of the system wave-function. The elementary probability-scattering networks corresponding to a single ionic and covalent bonds of the system constituent diatomic fragments, to be used to construct the communication systems of any VB structure, are identified and their entropy/information descriptors are summarized. The overall bond multiplicities of VB structures are generated using the relevant grouping rules for the entropy/information quantities and the molecular IT bond-order and its covalent/ionic components are obtained as the ensemble averages of the corresponding descriptors of individual VB structures. Illustrative applications to the hydrogen molecule and π-bonds in allyl, butadiene and benzene are reported and discussed. Equating the VB-ensemble average quantities for these π-electron systems with those resulting from the Hückel Molecular Orbital (MO) theory then allows one to extract the VB relative covalency and ionicity measures for all chemical bonds in the molecule. The simple MO and VB descriptions of the hydrogen molecule are compared and the role of a strong overlap between the VB structures is investigated in a more detail. Finally, the entropy/information descriptors of the information distribution in the resultant promolecule → Atoms-in-H2 channel resulting from the sequential information cascade consisting of the promolecular and VB probability propagation stages is examined to determine the dependence of the flow of information on the adopted reference system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Fisher, Proc. Cambridge Phil. Soc. 22, 700 (1925); see also: B.R. Frieden, Physics from the Fisher Information—a Unification (Cambridge University Press, Cambridge, 2000)

  2. C.E. Shannon, Bell System Tech. J. 27, 379, 623 (1948); see also: C.E. Shannon, W. Weaver, The Mathematical Theory of Communication (University of Illinois, Urbana, 1949)

  3. S. Kullback, R.A. Leibler, Ann. Math. Stat. 22, 79 (1951); see also: S. Kullback, Information Theory and Statistics (Wiley, New York, 1959)

  4. Abramson N.: Information Theory and Coding. McGraw-Hill, New York (1963)

    Google Scholar 

  5. R.F. Nalewajski, Information Theory of Molecular Systems (Elsevier, Amsterdam, 2006) and refs. therein

  6. Nalewajski R.F.: J. Phys. Chem. A 104, 11940 (2000)

    Article  CAS  Google Scholar 

  7. R.F. Nalewajski, Mol. Phys. 102, 531, 547 (2004)

    Google Scholar 

  8. Nalewajski R.F.: Mol. Phys. 103, 451 (2005)

    Article  CAS  Google Scholar 

  9. R.F. Nalewajski, Mol. Phys. 104, 493, 1977, 2533 (2006)

  10. Nalewajski R.F.: Mol. Phys. 104, 365 (2006)

    Article  CAS  Google Scholar 

  11. Nalewajski R.F.: Struct. Chem. 15, 391 (2004)

    Article  CAS  Google Scholar 

  12. Nalewajski R.F.: J. Math. Chem. 38, 43 (2005)

    Article  CAS  Google Scholar 

  13. Nalewajski R.F.: Theoret. Chem. Acc. 114, 4 (2005)

    Article  CAS  Google Scholar 

  14. R.F. Nalewajski, K. Jug, in Reviews of Modern Quantum Chemistry: A Celebration of the Contributions of Robert G. Parr, vol. I, ed. by K.D. Sen (World Scientific, Singapore, 2002), p. 148

  15. Nalewajski R.F.: Chem. Phys. Lett. 386, 265 (2004)

    Article  CAS  Google Scholar 

  16. R.F. Nalewajski, J. Math. Chem. (in press), doi:10.1007/s10910-007-9345-4

  17. R.F. Nalewajski, Mol. Phys., 104, 2533, 3339 (2006)

    Google Scholar 

  18. Nalewajski R.F.: J. Phys. Chem. A 111, 4855 (2007)

    Article  CAS  Google Scholar 

  19. Nalewajski R.F.: J. Math. Chem. 43, 265 (2006)

    Article  Google Scholar 

  20. Nalewajski R.F.: J. Math. Chem. 43, 780 (2008)

    Article  CAS  Google Scholar 

  21. R.F. Nalewajski, J. Math. Chem. (in press), doi:10.1007/s10910-007-9318-7

  22. W. Heitler, F. London, Z. Physik 44, 455 (1927); for an English translation see: H. Hettema, Quantum Chemistry Classic Scientific Paper (World Scientific, Singapore, 2000); F. London, Z. Phys. 455, 46 (1928)

  23. S. Shaik, in New Theoretical Concepts for Understanding Organic Reactions, NATO ASI Series, vol. C267, ed. by J. Bertran, I. G. Czismadia (Kluwer Academic Publ., Dordrecht, 1989), p. 165; S. Shaik, P.C. Hiberty, Adv. Quant. Chem. 26, 100 (1995)

  24. Goddard W.A. III, Harding L.B.: Annu. Rev. Phys. Chem. 29, 363 (1978)

    Article  CAS  Google Scholar 

  25. Murrell J.N., Carter S., Farantos S.C., Huxley P., Varandas A.J.C.: Molecular Potential Energy Functions. Wiley, New York (1984)

    Google Scholar 

  26. Eyring H., Walter J., Kimball G.E.: Quantum Chemistry. Wiley, New York (1958)

    Google Scholar 

  27. Barriol J.: Elements of Quantum Mechanics with Chemical Applications. Barnes & Noble, New York (1971)

    Google Scholar 

  28. O.K. Dawtjan, Quantum Chemistry (Higher School, Moscow, 1962), in Russian

  29. G. Rumer, Göttingen Nachr. 377 (1932)

  30. Jug K., Köster A.M.: J. Am. Chem. Soc. 112, 6772 (1990)

    Article  CAS  Google Scholar 

  31. Berry R.S., Rice S.A., Ross J.: Physical Chemistry. Wiley, New York (1980)

    Google Scholar 

  32. Nalewajski R.F., Köster A.M., Jug K.: Theoret. Chim. Acta (Berl.) 85, 463 (1993)

    Article  CAS  Google Scholar 

  33. R.F. Nalewajski, J. Mrozek, Int. J. Quantum Chem. 51, 187 (1994); R.F. Nalewajski, S.J. Formosinho, A.J.C. Varandas, J. Mrozek, Int. J. Quantum Chem. 52, 1153 (1994)

  34. Nalewajski R.F., Mrozek J., Mazur G.: Can. J. Chem. 100, 1121 (1996)

    Article  Google Scholar 

  35. Nalewajski R.F., Mrozek J., Michalak A.: Int. J. Quantum Chem. 61, 589 (1997)

    Article  CAS  Google Scholar 

  36. Mrozek J., Nalewajski R.F., Michalak A.: Polish J. Chem. 72, 1779 (1998)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman F. Nalewajski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nalewajski, R.F. Communication-theory perspective on valence-bond theory. J Math Chem 45, 709–724 (2009). https://doi.org/10.1007/s10910-008-9385-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-008-9385-4

Keywords

Navigation