Skip to main content
Log in

Evolving a Kirchhoff elastic rod without self-intersections

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper we study the problem on how to find an equilibrium state of a Kirchhoff elastic rod by evolving it in a certain way, called a geometric flow. The elastic energy of rods would decrease during the geometric flow. We show that rods remain smooth during the geometric flow as long as they stay embedded, e.g., self-penetrations do no occur. Furthermore, rods would approach an equilibrium configuration asymptotically if self-penetrations are avoided during the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldinger J., Klapper I., Tabor M.: Formulae for the calculation and estimation of writhe. J. Knot Theory Ramifications 4(3), 343–372 (1995)

    Article  Google Scholar 

  2. Aubin T.: Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren der Mathematischen Wissenschaften, 252. Springer-Verlag, New York (1982)

    Google Scholar 

  3. Bishop R.: There is more than one way to frame a curve. Amer. Math. Monthly 82, 118–133 (1975)

    Article  Google Scholar 

  4. Călugăreanu G.: Sur les classes d’isotopie des nœuds tridimensionnels et leurs invariants. Czechoslovak Math. J. 11(86), 588–625 (1961)

    Google Scholar 

  5. Dziuk G., Kuwert E., Schätzle R.: Evolution of elastic curves in \({\mathbb{R}^{n}}\) , existence and computation. SIAM J. Math. Anal. 33(5), 1228–1245 (2002)

    Article  Google Scholar 

  6. Fuller F.B.: The writhing number of a space curve. Proc. Nat. Acad. Sci. U.S.A. 68, 815–819 (1971)

    Article  CAS  Google Scholar 

  7. Fuller F.B.: Decomposition of the linking number of a closed ribbon: a problem from molecular biology. Proc. Nat. Acad. Sci. U.S.A. 75(8), 3557–3561 (1978)

    Article  CAS  Google Scholar 

  8. Ivey T., Singer D.: Knot types, homotopies and stability of closed elastic rods. Proc. London Math. Soc. (3) 79, 429–450 (1999)

    Article  Google Scholar 

  9. Langer J., Singer D.: Lagrangian aspects of the Kirchhoff elastic rod. SIAM Rev. 38(4), 605–618 (1996)

    Article  Google Scholar 

  10. Lin C.C., Schwetlick H.R. On the geometric flow of Kirchhoff elastic rods. SIAM J. Appl. Math. 65(2), 720–736 (2004/05)

    Article  Google Scholar 

  11. A. Polden, Curves and surfaces of least total curvature and fourth-order flows, Ph.D. dissertation, Universität Tübingen, Tübingen, Germany, 1996

  12. Schuricht F., von der Mosel H.: Euler-Lagrange equations for nonlinearly elastic rods with self-contact. Arch. Ration. Mech. Anal. 168(1), 35–82 (2003)

    Article  Google Scholar 

  13. White J.H.: Self-linking and the Gauss integral in higher dimensions. Amer. J. Math. 91, 693–728 (1969)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Chi Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CC., Schwetlick, H.R. Evolving a Kirchhoff elastic rod without self-intersections. J Math Chem 45, 748–768 (2009). https://doi.org/10.1007/s10910-008-9383-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-008-9383-6

Keywords

Navigation