Journal of Mathematical Chemistry

, Volume 42, Issue 4, pp 1135–1145 | Cite as

Nonnegativity and positiveness of solutions to mass action reaction–diffusion systems

Original Paper

Abstract

We show that solutions of a mass action chemical kinetics reaction–diffusion system are nonnegative. Conditions for components of the solution to be strictly positive or identically zero are given, based on an indexing procedure due to A. I. Volpert [Mat. Sb. (Russian) 88, 578–588 (1972); Math. USSR Sb. (English) 17, 571–582]. The results are illustrated with some examples.

Keywords

Reaction-diffusion systems Chemical kinetics Positiveness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auchmuty J.F. (1977). Proc. R. Soc. Edinb. 79A, 183–191Google Scholar
  2. A.I. Volpert, Mat. Sb. (Russian) 88, 578–588 (1972); Math. USSR Sb. (English) 17, 571–582Google Scholar
  3. Frankel L. (2000). Introduction to Maximum Principles and Symmetry in Elliptic Problems. Cambridge University Press, CambridgeGoogle Scholar
  4. Protter M.H., Weinberger H.F. (1984). Maximum Principles in Differential Equations. Springer, New YorkGoogle Scholar
  5. Volpert A.I., Hudyaev S.I. (1985). Analyses in Classes of Discontinuous Functions and Equations of Mathematical Physics. Martinus Nijhoff Publishers, DordrechtGoogle Scholar
  6. Volpert A.I., Volpert V.A., Volpert Vl.A. (1994). Traveling Wave Solutions of Parabolic Systems. AMS, Providence, RIGoogle Scholar
  7. Smoller J. (1983). Shock Waves and Reaction-Diffusion Equations. Springer, New YorkGoogle Scholar
  8. Erdi P., Toth J. (1989). Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models. Manchester University Press, ManchesterGoogle Scholar
  9. Fife P.C. (1979). Mathematical Aspects of Reacting and Diffusing Systems. Springer, BerlinGoogle Scholar
  10. Amann H. (1978). J. Math. Anal. Appl. 65, 432–467CrossRefGoogle Scholar
  11. Ladde G.S., Lakshmikantham V., Vatsala A.S. (1985). Monotone Iterative Techniques for Nonlinear Differential Equations. Pitman, BostonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Applied MathematicsUniversity of WaterlooWaterlooCanada
  2. 2.Department of ChemistryUniversity of LethbridgeLethbridgeCanada
  3. 3.Department of MathematicsUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations