Skip to main content
Log in

Principal component analysis and multicomponent surface free energy theories

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

The same underlying mathematical structure characterizes some of the most popular multicomponent models for the prediction of surface free energies and adhesion works. After a brief illustration of the general methods for the computation of liquid and solid components in typical multicomponent theories, it is shown that both model definition and component estimate may take great advantage from application of Principal Component Analysis techniques, owing to the very peculiar structure of adhesion work equations. It is also put into evidence that a problem of scale multiplicity arises as a consequence of the symmetries involved in the model equations for adhesion work and surface free energy. A special discussion is devoted to the specific cases of van Oss–Chaudhury–Good acid–base theory, Qin–Chang model and extended Drago theory, which constitute the most common multicomponent models usually applied in the analysis of adhesion phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • van Oss C.J., Good R.J., Chaudhury M.K. (1986). J. Protein Chem. 5: 385

    Article  Google Scholar 

  • van Oss C.J., Chaudhury M.K., Good R.J. (1987). Adv. Coll. Interf. Sci. 28: 35

    Article  Google Scholar 

  • van Oss C.J., Good R.J., Chaudhury M.K. (1988). Langmuir 4: 884

    Article  Google Scholar 

  • R.J. Good and M.K. Chaudhury, in: Fundamentals of Adhesion, ed. L.H. Lee (Plenum Press, New York, 1991) Chapt. 3.

  • R.J. Good and C.J. van Oss, in: Modern Approach to Wettability: Theory and Application eds. M.E. Schrader and G. Loed (Plenum Press, New York, 1991) Chapt. 1.

  • van Oss C.J. (1994). Interfacial Forces in Aqueous Media. Marcel Dekker, New York

    Google Scholar 

  • Owens D.K., Wendt R.C. (1969). J. Appl. Polym. Sci. 13: 1741

    Article  CAS  Google Scholar 

  • Barber A.H., Cohen S.R., Wagner H.D. (2004). Phys. Rev. Lett. 92: 186103

    Article  CAS  Google Scholar 

  • Qin X., Chang W.V. (1995). J. Adhesion Sci. Technol. 9: 823

    CAS  Google Scholar 

  • Qin X., Chang W.V. (1996). J. Adhesion Sci. Technol. 10: 963

    Article  CAS  Google Scholar 

  • W.V. Chang and X. Qin, in: Acid–base Interactions: Relevance to Adhesion Science and Technology, ed. K.L. Mittal (VSP, Utrecht, 2000) Vol. 2, pp. 3–54.

  • Drago R.S. (1973). Struct. Bond. 15: 73

    CAS  Google Scholar 

  • Drago R.S., Vogel G.C., Needham T.E. (1971). J. Amer. Chem. Soc. 93: 6014

    Article  CAS  Google Scholar 

  • Drago R.S., Parr L.B., Chamberlain C.S. (1977). J. Amer. Chem. Soc. 99: 3203

    Article  CAS  Google Scholar 

  • Edwards J.O. (1954). J. Amer. Chem. Soc. 76: 1540

    Article  CAS  Google Scholar 

  • Mulliken R.S. (1952). J. Phys. Chem 56: 801

    Article  CAS  Google Scholar 

  • Foss A. (1947). Acta Chem. Scand. 1: 8

    CAS  Google Scholar 

  • Peterson I.R. (2005). Surface Coatings Int. Part B: Coatings Trans. 88(1): 1

    Article  CAS  Google Scholar 

  • Lee L.H. (1996). Langmuir 12: 1681

    Article  CAS  Google Scholar 

  • Della Volpe C., Siboni S. (1997). J. Coll. Interf. Sci. 195: 121

    Article  CAS  Google Scholar 

  • Kamlet M.J., Abboud J.M., Abraham M.H., Taft R.W. (1983). J. Org. Chem. 48: 2877

    Article  CAS  Google Scholar 

  • Abraham M.H. (1993). Chem. Soc. Rev. 22:73

    Article  CAS  Google Scholar 

  • Wu S. (1971). J. Polym. Sci., Part C 34:19

    Google Scholar 

  • Wu S. (1982). Polymer Interface and Adhesion. Marcel Dekker, New York

    Google Scholar 

  • C. Della Volpe and S. Siboni, J. Adhesion Sci. Technol. 14(2) (2000) 235. Reprinted in: Apparent and Microscopic Contact Angles eds. J. Drelich, J.S. Laskowsky and K.L. Mittal (VSP, New York, 2000).

  • Stewart G.W. (1973). Introduction to Matrix Computations. Academic press, Orlando Fla

    Google Scholar 

  • Wise B.M., Gallagher N. (1996). J. Proc. Cont. 6: 329

    Article  CAS  Google Scholar 

  • Geladi P., Kowalsky B.R. (1986). Anal. Chimica Acta 185: 1

    Article  CAS  Google Scholar 

  • Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T. (1989). Numerical Recipes. Cambridge University Press, Cambridge

    Google Scholar 

  • Gilmore R. (1974). Lie Groups, Lie Algebras, and Some of Their Applications. Wiley New York, N.Y.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Siboni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Della Volpe, C., Siboni, S. Principal component analysis and multicomponent surface free energy theories. J Math Chem 43, 1032–1051 (2008). https://doi.org/10.1007/s10910-007-9247-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-007-9247-5

Keywords

AMS classification

Navigation