Skip to main content
Log in

Indistinguishability in DR n-fold point-sets & their \({\mathcal{S}}_n\) -invariant dual projective mappings: limitations imposed on Racah–Wigner algebras for Liouville spin dynamics of [A] n X multi-invariant NMR systems

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

The theoretic implications of democratic recoupling (DR) over identical point sets with their related \(\tilde{\bf U} \times\mathcal {P}(\mathcal {S}_n)\) group actions defining Liouvillian (super)boson projective mapping on carrier space(s) is re-examined in the context of \([A]_n X,[AX]_n(SU(2) \times \mathcal {S}_n)\) (model) spin systems. In such identical point set (DR) scenerio, graph theoretic recoupling with its direct Racah–Wigner algebra (RWA) for n ≥ 3 is disallowed [Atiyah, Sutcliffe, 2002,Proc. R. Soc., Lond., A458, 1089], in favour of dual group actions (over a carrier space) and DR which yields a set of \(\tilde{v}\mathcal {S}_n\) invariant-labelled disjoint carrier subspaces [Temme, 2005, Proc. R. Soc., Lond. A461, 341] in formalisms that define the {\(T^k _{\{\tilde{v}\}}(11..1)\) } ’set completeness’, based on group invariants and their cardinality, |SI|(n) as [2006, Mol. Phys., submitted MS]. Even for tensorial properties of three-fold mono-invariant spin/isospinsystems, many particle indistinguishability (identicality) poses various problems for subsequent direct use of RWA. The value of Lévi-Civitá democratic (super) operator approach is that it generates auxilary cyclic commutation properties permitting realistic extended form RWA usage. This Lévi-Civitá -based method is restricted however to three-fold identical spin problems, similar to that of Lévy-Leblond and Lévy-Nahas [1965, J. Math. Phys., 6, 1372 ]; higher index \(SU(2)\times \mathcal {S}_{n\,{\ge}\, 4}\) based problems require novel \(\mathcal {S}_n \) quantum physics solutions. The purpose of this communication is to stress the need for (group) compatibility between spin symmetry of the specific problem and the algebra adopted to solve it–i.e. prior to regarding any particular (group) problem as physically non-analytic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biedenharn L.C., Louck J.D. (1985) Angular Momentum Theory in Quantum Physics, Vol. 8; Racah-Wigner Algebra, Vol. 9, Encyclopaedia Mathematics. Univ. Press, Cambridge

    Google Scholar 

  2. B.C. Sanctuary and T.K. Halstead, Adv. Opt. Magn. Reson. 15 (1991) 91; B.C. Sanctuary and J. Chem. Phys. 64 (1976) 4352.

  3. Balasubramanian K. (1983). J. Chem. Phys. 78 (1983) 6358, 6369.

    Google Scholar 

  4. G.J. Bowden, W. Hutchinson and J.K. Katchan, J. Magn. Reson. 70 (1986) 361; 79 (1988) 413.

    Google Scholar 

  5. B.G. Wybourne, Classical Groups in Physics (Wiley, New York, 1970); Symmetry Principles in Atomic Spectroscopy (Wiley, New York 1976).

  6. A. Kerber and A. Kohnert and A. Lascoux, J. Symb. Comput. 14 (1993) 195; SYMMETRICA Package, loc cit.

  7. B.E. Sagan, Symmetric Group: Its Representation, Combinatorial Algorithms, & Sym. Functions (Brookes-Wadsworth, CA; Springer, Berlin, 1991/2001).

  8. J.D. Louck and L.C. Biedenharn, in: Permutation Group in Physics & Chemistry (Springer, Berlin, 1979).

  9. Temme F.P. (2005). Proc. R. Soc. Lond., A461: 341

    Google Scholar 

  10. Weyl H. (1946) Representation and Invariants of Classical Groups. Univ. Press, Princeton

    Google Scholar 

  11. Corio P.L. (1998). J. Magn. Reson. 34: 131

    Article  Google Scholar 

  12. B.C. Sanctuary and F.P. Temme, (2007b) (in final preparation).

  13. F.M. Chen, H. Moraal and R.F. Snider, J. Chem. Phys. 57 (1965) 542; J.A.R. Coope, J. Math. Phys., 11 111.

  14. Listerud J., Glaser S.J., Drobny G.P (1993). Mol. Phys. 78: 629

    Article  CAS  Google Scholar 

  15. J.M. Lévy-Leblond and M. Lévy-Nahas, J. Math. Phys. 6 (1965) 1372; K. Chakrabati, Ann. Inst. H. Poincare, 6 (1964) 533.

    Google Scholar 

  16. M. Atiyah and P.M. Sutcliffe, Proc. R. Soc, Lond. A548 (2002) 1089, et loc. cit.

  17. Temme F.P. (2004). J. Magn. Reson. 167: 119

    Article  CAS  Google Scholar 

  18. Idem., Int. J. Quantum Chem. 89 (2002) 429.

  19. H.W. Galbraith, J. Math. Phys. 12 (1971) 782, 2380

  20. F.P. Temme, Mol. Phys. (2007b) (to be publ’d.)

  21. F.P. Temme and B.C. Sanctuary, Symmetry Spectroscopy & SCHUR (M-K Univ. Press, Torun, 2006) pp. 271-280.

  22. K. Balasubramanian, Chem. Phys. Lett. 391 (2004) 64, 69; also 182, 257.

  23. Temme F.P. (2005). Coll. Czech. Chem. Commun. 70: 1172

    Article  Google Scholar 

  24. Sachs R.G. (1987) Time-reversal in Physics. Chicago Univ. Press., Chicago

    Google Scholar 

  25. Ernst M., Meier B., Tomaselli M., Pines A. (1998). Mol. Phys. 95: 849

    Article  CAS  Google Scholar 

  26. van Beek J.D., Carravetta M., Antoneli G-C., Levitt M.H. (2005). J. Chem. Phys. 122: 244510

    Article  Google Scholar 

  27. Siddall-III T.H. (1982). J. Phys. Chem. 86: 91

    Article  Google Scholar 

  28. Sullivan J.J., Siddall-III T.H. (1992). J. Math. Phys. 33: 1964

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. P. Temme.

Additional information

Dedicated in memoriam to: Vedene H. Smith, Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanctuary, B.C., Temme, F.P. Indistinguishability in DR n-fold point-sets & their \({\mathcal{S}}_n\) -invariant dual projective mappings: limitations imposed on Racah–Wigner algebras for Liouville spin dynamics of [A] n X multi-invariant NMR systems. J Math Chem 43, 1119–1126 (2008). https://doi.org/10.1007/s10910-007-9236-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-007-9236-8

Keywords

Navigation