Skip to main content
Log in

Entropic bond indices from molecular information channels in orbital resolution: ground-state systems

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

The molecular communication channels of Information Theory (IT) are constructed within the orbital description of molecular electronic structure using the superposition principle of quantum mechanics. Two types of such information systems are introduced, called the “geometric” and “physical” channels. The communication network of the former is determined by all molecular orbitals (MO), occupied and virtual, which result from the specified set of atomic orbitals (AO). The geometric channel thus reflects the relative “rotation” of MO relative to AO in the molecular Hilbert space, and the associated “promotion” of AO in the molecule due to the probability scattering via the communication network generated by the complete set of MO. They are devoid of the physical content embodied in the MO-occupations, which distinguish one electron configuration of the molecule from another. The latter information is included in the physical AO-promotion channels, which involve the probability scattering via the occupied MO alone. The probability conditioning is shown to be related to the appropriate projection in the orbital Hilbert space. The geometric and the physical (ground-state) bond indices of the conditional-entropy (IT-covalency) and mutual-information (IT-ionicity) are generated for the 2-AO model and selected π-electron systems (ethylene, allyl, butadiene, and benzene) in the Hückel approximation. They are shown to compare favorably with the previously reported IT bond-orders obtained from the two-electron molecular information channels in atomic resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wiberg K.A, (1968) . Tetrahedron 24: 1083

    Article  CAS  Google Scholar 

  2. Gopinathan M.S, Jug K., (1983) . Theor. Chim. Acta (Berlin) 63, 497, 511

    Google Scholar 

  3. Jug K. and Gopinathan M.S, in: Theoretical Models of Chemical Bonding, Vol.II ed. Z.B. Maksić (Springer, Heidelberg, 1990) p. 77

  4. Mayer I., (1983) . Chem. Phys. Lett. 97: 270

    Article  CAS  Google Scholar 

  5. Nalewajski R.F, Köster A.M., Jug K., (1993) . Theor. Chim. Acta. (Berlin) 85: 463

    Article  CAS  Google Scholar 

  6. Nalewajski R.F., Mrozek J., (1994) . Int. J. Quantum Chem. 51: 187

    Article  CAS  Google Scholar 

  7. Nalewajski R.F, Formosinho S.J, Varandas A.J.C., Mrozek J., (1994) . Int. J. Quantum Chem. 52: 1153

    Article  CAS  Google Scholar 

  8. Nalewajski R.F, Mrozek J., Mazur G., (1996) . Can. J. Chem. 100: 1121

    Article  Google Scholar 

  9. Nalewajski R.F, Mrozek J., Michalak A., (1997) . Int. J. Quantum Chem. 61, 589

    Article  CAS  Google Scholar 

  10. Mrozek J., Nalewajski R.F, Michalak A., (1998) . Pol. J. Chem. 72: 1779

    CAS  Google Scholar 

  11. Nalewajski R.F, (2004) . Chem. Phys. Lett. 386: 265

    Article  CAS  Google Scholar 

  12. Ponec R., Strnad M., (1994) . Int. J. Quantum Chem. 50: 43

    Article  CAS  Google Scholar 

  13. Ponec R., Uhlik F., (1997) . J. Mol. Struct. (Theochem) 391: 159

    Article  CAS  Google Scholar 

  14. Nalewajski R.F, (2000) . J. Phys. Chem. A 104: 11940

    Article  CAS  Google Scholar 

  15. Nalewajski R.F, Mol. Phys. 102 (2004) 531, 547

    Article  CAS  Google Scholar 

  16. Nalewajski R.F, (2005) . Mol. Phys. 103: 451

    Article  CAS  Google Scholar 

  17. Nalewajski R.F, (2006) . Mol. Phys. 104: 365

    Article  CAS  Google Scholar 

  18. Nalewajski R.F, (2006) . Mol. Phys. 104: 493

    Article  CAS  Google Scholar 

  19. Nalewajski R.F, (2005) . J. Math. Chem. 38: 43

    Article  CAS  Google Scholar 

  20. Nalewajski R.F, (2005) . Theor. Chem. Acc. 114: 4

    Article  CAS  Google Scholar 

  21. Nalewajski R.F, (2004) . Struct. Chem. 15: 391

    Article  CAS  Google Scholar 

  22. R.F. Nalewajski and K. Jug, in: Reviews of Modern Quantum Chemistry: A Celebration of the Contributions of Robert G. Parr, Vol.I, ed. K.D. Sen (World Scientific, Singapore, 2002), p. 148

  23. Nalewajski R.F, (2006). Information Theory of Molecular Systems. Elsevier, Amsterdam

    Google Scholar 

  24. Nalewajski R.F, (2006) . Mol. Phys. 104: 13

    Google Scholar 

  25. Nalewajski R.F, (2006) . Mol. Phys. 104: 2533

    Article  CAS  Google Scholar 

  26. Hirshfeld F.L, (1977) . Theor. Chim. Acta (Berlin) 44: 129

    Article  CAS  Google Scholar 

  27. Nalewajski R.F, Broniatowska E., (2005) . Int. J. Quantum Chem. 101: 349

    Article  CAS  Google Scholar 

  28. Heitler W. and London F., Z. Phys. 44 (1927) 455; for an English translation see: H. Hettema, Quantum Chemistry Classic Scientific Paper (World Scientific, Singapore, 2000).

  29. London F., (1928) . Z. Phys. 455: 46

    Google Scholar 

  30. Abramson N., (1963). Information Theory and Coding. McGraw-Hill, New York

    Google Scholar 

  31. Shannon C.E, Bell Syst. Tech. J. 27 (1948) 379, 623; see also: C.E. Shannon and W. Weaver, The Mathematical Theory of Communication (University of Illinois, Urbana, 1949).

  32. S. Shaik, in: New Theoretical Concepts for Understanding Organic Reactions, NATO ASI Series, Vol. C267, ed. J. Bertran, and I.G. Czismadia (Kluwer Academic Publishers, Dordrecht, 1989) p. 165

  33. Jug K., Köster A.M., (1990) . J. Am. Chem. Soc. 112: 6772

    Article  CAS  Google Scholar 

  34. S. Shaik and P.C. Hiberty, in: Theoretical Models of Chemical Bonding, Vol. 4, ed. Z.B. Maksić (Springer, Berlin, 1991) p. 269; Adv. Quant. Chem. 26 (1995) 100.

  35. Nalewajski R.F, Entropic bond indices from molecular information channels in orbital resolution: Excited configurations, submitted to Mol. Phys.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Nalewajski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nalewajski, R.F. Entropic bond indices from molecular information channels in orbital resolution: ground-state systems. J Math Chem 43, 265–284 (2008). https://doi.org/10.1007/s10910-006-9194-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-006-9194-6

Keywords

Navigation