Skip to main content
Log in

Application of graph theory: Models for prediction of carbonic anhydrase inhibitory activity of sulfonamides

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

The relationship of Wiener’s index–a distance-based topological descriptor, Zagreb group parameter – M1, an adjacency-based topological descriptor and eccentric connectivity index–an adjacency-cum-distance based topological descriptor with the carbonic anhydrase (CA) isozyme-II inhibitory activity of sulfonamides has been investigated. A training set comprising of 34 analogues of substituted sulfonamides was selected for the present investigations. The values of the Wiener’s index, Zagreb group parameter, and eccentric connectivity index for each of 34 analogues comprising the data set were computed. Resulting data was analyzed and suitable models were developed after identification of active ranges. Subsequently, a biological activity was assigned to each analogue involved in the data set using these models, which was then compared with the reported CA isozyme-II inhibitory activity. Accuracy of prediction was found to vary from a minimum of 82% for model based on Wiener’s index to a maximum of 88% for the model based on Zagreb group parameter. Moreover, highly active range of the proposed models also exhibited appreciable inhibitory activity against CA isozyme-I and CA isozyme-IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mihalic Z., Nikolic S., Trinajstic N., (1992). J. Chem. Inf. Comput. Sci 32: 28

    Article  CAS  Google Scholar 

  2. Balaban A.T., Mills D., Ivanciuc O., Basak S.C., (2000). Croat. Chem. Acta 73: 923

    CAS  Google Scholar 

  3. Marino D.J.G., Peruzzo P.J., Castro E.A., Toropov A.A., (2002) Internet Electron. J. Mol. Des. 1: 115

    CAS  Google Scholar 

  4. Cao C., Yuan H., (2002) Internet Electron. J. Mol. Des. 1: 401

    CAS  Google Scholar 

  5. Ivanciuc O., Klein D.J., (2002). Croat. Chem. Acta 75: 577

    CAS  Google Scholar 

  6. Ivanciuc O., Klein D.J., (2002). J. Chem. Inf. Comput. Sci 42: 8

    Article  CAS  Google Scholar 

  7. Ivanciuc O., Balaban A.T., in: The Encyclopedia of Computational Chemistry, (eds.), P.V.R. Schleyer, Allinger N.L., Clark T, Gasteiger J, Kollman P.A., H. F. Schaefer III and P.R. Schreiner (Wiley, Chichester, 1998).

  8. Ivanciuc O, Ivanciuc T., Balaban A.T., in: Topological indices and related descriptors in QSAR/QSPR, eds. Devillers J., A.T. Balaban (Gordon and Breach Science Publishers, Amsterdam, 1999).

  9. Ivanciuc O, Ivanciuc T., Balaban A.T, (1998). J. Chem. Inf. Comput. Sci 38: 395

    Article  CAS  Google Scholar 

  10. Diudea M.V, (2001) QSAR/QSPR Studies by Molecular Descriptors. Nova Science, Huntinggton NY

    Google Scholar 

  11. Ivanciuc O, Ivanciuc T, D. (2000). Cabrol-Bassa and A.T Balaban. J. Chem. Inf. Comput. Sci. 40: 631

    CAS  Google Scholar 

  12. Hosoya H, (1971). Bull. Chem. Soc. Jpn. 44: 2332

    Article  CAS  Google Scholar 

  13. Hosoya H, (1972). J. Chem. Doc. 12: 181

    Article  CAS  Google Scholar 

  14. Randic M, (1975). J. Am. Chem. Soc 97: 6609

    Article  CAS  Google Scholar 

  15. Kier L.B., Hall L.H, (1986). Molecular Connectivity in Structure-Activity Analysis. Research Studies Press, Letchworth

    Google Scholar 

  16. Balaban A.T, Chiriac A, Motoc I., Simon Z, (1980). Lect. Notes. Chem 15: 22

    Google Scholar 

  17. Balaban A.T, (1985). J. Chem. Inf. Comput. Sci. 25: 334

    CAS  Google Scholar 

  18. Wiener H, (1974). J. Chem. Phys. 15: 766

    Article  Google Scholar 

  19. Wiener H, (1947). J. Am. Chem. Soc. 69: 2636

    Article  CAS  Google Scholar 

  20. Gutman I., Randic M, (1977). Chem. Phys. Lett 47: 15

    Article  CAS  Google Scholar 

  21. Gutman I, Ruscic B, Trinajstic N., Wilcox C.F, (1975). J. Chem. Phys. 62: 3399

    Article  CAS  Google Scholar 

  22. Sharma V, Goswami R., Madan A.K, (1997). J. Chem. Inf. Comput. Sci. 37: 273

    Article  CAS  Google Scholar 

  23. Gupta S, Singh M., Madan A.K, (2002). J. Math. Anal. Applic. 266: 259

    Article  Google Scholar 

  24. Sardana S., Madan A.K, (2002). MATCH Commun. Math. Comput. Chem. 45: 35

    CAS  Google Scholar 

  25. Sardana S., Madan A.K, (2001). MATCH Commun. Math. Comput. Chem. 43: 85

    CAS  Google Scholar 

  26. Gupta S, Singh M., Madan A.K, (1999). J. Chem. Inf. Comput. Sci. 39: 272

    Article  CAS  Google Scholar 

  27. Kauffman G.W., Jurs P.C, (2001). J. Chem. Inf. Comput. Sci. 41: 1553

    Article  CAS  Google Scholar 

  28. Gupta S, Singh M., Madan A.K, (2001). J. Comp. Aided. Mol. Des. 15: 671

    Article  CAS  Google Scholar 

  29. Chegwidden W.R., Edwards Y., Carter N, (2000). The Carbonic Anhydrases – New Horizons. Birkhäuser Verlag, Basel

    Google Scholar 

  30. Supuran C.T., Scozzafava A, (2000). Exp. Opin. Ther. Patents 10: 575

    Article  CAS  Google Scholar 

  31. http://arbl.cvmbs.colostate.edu/hbooks/molecules/carbonic_anhydrase.html

  32. D. Hewett-Emmett, in: The Carbonic Anhydrases – New Horizons, eds. Chegwidden W.R, Edwards Y., N. Carter (Birkhäuser Verlag, Basel, 2000) pp. 29–78

  33. Supuran C.T, Scozzafava A., (2003). Casini A. Med. Res. Rev 23: 146

    Article  CAS  Google Scholar 

  34. Gamboa J, Caceda R, Gamboa A., Monge C, (2000). Biol. Res. Santiago 33: 3–4

    Google Scholar 

  35. Swenson E.R, (1998). Eur. Respir. J. 12: 1242

    Article  CAS  Google Scholar 

  36. Cain S.M., Dunn J.E, (1966). J. Appl. Physiol. 21: 1195

    CAS  Google Scholar 

  37. Hackett P.H., (1976). Rennie D, Lancet 7996: 1149

    Article  Google Scholar 

  38. Johnson T.S., (1988). Rock P, B NEJM 319: 841

    CAS  Google Scholar 

  39. Geers C., Gros G, (2000). Physiol. Rev 80: 681

    CAS  Google Scholar 

  40. Tricarico D, Barbieri M, Mele A, Carbonara G., Camerino D.C, (2004). FASEB J 18: 760

    CAS  Google Scholar 

  41. Fukushima M, Ozaki N, Ikeda H, Furihata K, Hayakawa Y, Sakuda S., Nagasawa H, (2002). Mar Biotechnol. (NY) 4: 103

    CAS  Google Scholar 

  42. Hayes S.G, (1994). Ann. Clin. Psychiatry 6: 91

    Article  CAS  Google Scholar 

  43. Busenbark K, Ramig L, Dromey C., Koller W.C, (1996). Neurology 47: 1331

    CAS  Google Scholar 

  44. Sone M, Sei H, Morita Y, Ogura T., Sone S, (1998). Physiol. Behav 63: 213

    Article  CAS  Google Scholar 

  45. Masereel B, Rolin S, Abbate F, Scozzafava A., Supuran C.T, (2002). J. Med. Chem. 45: 312

    Article  CAS  Google Scholar 

  46. Ren B, (1999). J. Chem. Inf. Comput. Sci. 39: 139

    Article  CAS  Google Scholar 

  47. Ivanciuc O, Ivanciuc T., Balaban A.T, (2002). Internet. Electron. J. Mol. Des 1: 252

    CAS  Google Scholar 

  48. Supuran C.T, Vullo D, Manole G, Casini A., Scozzafava A, (2004). Curr. Med. Chem.: Cardiovascular. Hematol. Agents. 2: 49

    Article  CAS  Google Scholar 

  49. Supuran C.T., Scozzafava A, (2001) Curr. Med. Chem.: Immunol. Endoc. Metab. Agents 1: 61

    Article  CAS  Google Scholar 

  50. Supuran C.T, in: Carbonic Anhydrase and Modulation of Physiologica and Pathologic Processes in the Organism, ed. I. Puscas (Helicon, Timisoara, Poumania, 1994) pp. 29–111.

  51. Maren T.H., (1967). Physiol. Rev. 47: 595

    CAS  Google Scholar 

  52. Reiss W.G., Oles K.S, (1996). Ann. Pharmacother. 30: 1470

    Google Scholar 

  53. Battistini S, Stenirri S, Piatti M, Gelfi C, Righetti P.G., Rocchi R, (1999). Neurology 13: 38

    Google Scholar 

  54. Cowen M.A, Green M, Bertollo D.N., Abbott K, (1997). J. Clin. Psychopharmacol. 17: 190

    Article  CAS  Google Scholar 

  55. Griggs R.C, Moxely R.T, Riggs J.E., Engel W.K, (1978). Ann. Neurol. 3: 531

    Article  CAS  Google Scholar 

  56. Links T.P, Smit A.J, Molenaar W.M, Zwarts M.J., Oosterhuis H.J, (1994). J. Neuro. Sci. 122: 33

    Article  CAS  Google Scholar 

  57. Uitti R.J, (1998). Geriatrics 53: 46

    CAS  Google Scholar 

  58. Bernhard W.N, Schalik L.M, Delaney P.A, Bernhald T.M., Barnas G.M, (1998). Aviat. Space. Environ. Med. 69: 883

    CAS  Google Scholar 

  59. Bradwell A.R, Wright A.D, Winterborn M., Imray C, (1992). Int. J. Sports. Med. 13: 63

    Article  Google Scholar 

  60. Dureja H., Madan A.K, (2006). J. Mol. Graph. Mod. 25: 373

    Article  CAS  Google Scholar 

  61. Nokolic S, Kovacevic G, Milicevic A., Trinajstic N, (2003). Croat. Chem. Acta. 76: 113

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Madan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, V., Madan, A.K. Application of graph theory: Models for prediction of carbonic anhydrase inhibitory activity of sulfonamides. J Math Chem 42, 925–940 (2007). https://doi.org/10.1007/s10910-006-9149-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-006-9149-y

Keywords

Navigation