Skip to main content
Log in

Diffusion and Reaction Rates of the Yttrium Aluminium Garnet Synthesis using Different Techniques

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

The mathematical model of the yttrium aluminium garnet synthesis presented in this article. The model based on a system of non-stationary diffusion equations containing a non-linear term related to kinetics of reaction. Using computer-simulation tools and known experimental results we estimated the diffusion and reaction rates of the synthesis. Also it was shown that diffusion rate is a limited stage of the synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aichele T., Lorenz T., Hergt R. and Gornert P. (2003). Cryst. Res. Technol 38:575

    Article  CAS  Google Scholar 

  2. Brown M.E. (1988). Introduction to Thermal Analysis. Techniques and Applications. Chapman and Hall, London

    Google Scholar 

  3. Chadzynski G.W., Kutarov V.V., and Staszczuk P. (2004). J. Therm. Anal. Calorim. 76:633

    Article  CAS  Google Scholar 

  4. Dong J., Deng P. and Xu J. (1999). Optics Commun. 170:255

    Article  CAS  Google Scholar 

  5. Frade J.R., and Cable M. (1997). J. Mater. Sci 32:2727

    Article  CAS  Google Scholar 

  6. Galwey A.K., and Brown M.E. (2002). Thermochim Acta 386:91

    Article  CAS  Google Scholar 

  7. Garskaite E., Jasaitis D. and Kareiva A. (2003). J. Serb. Chem. Soc 68:677

    Article  CAS  Google Scholar 

  8. Harlan C.J., Kareiva A., Macqueen D.B., Cook R. and Barron A.R. (1997). Adv. Mater 9:68

    Article  CAS  Google Scholar 

  9. Ikesue A., Yoshida K. and Kamata K. (1996). J. Am. Ceram. Soc 79:507

    Article  CAS  Google Scholar 

  10. Kaczmarek S.M., Domianiak-Dzik G., Ryba-Romanowski W., Kisielewski J. and Wojtkowska J. (1999). Cryst. Res. Technol 34:1031

    Article  CAS  Google Scholar 

  11. King B.H., and Halloran J.W. (1995). J. Am. Ceram. Soc 78:2141

    Article  CAS  Google Scholar 

  12. Leleckaite A. and Kareiva A. (2004). Opt. Mater 26:123

    Article  CAS  Google Scholar 

  13. Liu Y., Zhang Z.F., King B., Halloran J. and Laine R.M. (1996). J. Am. Ceram. Soc 79:385

    Article  CAS  Google Scholar 

  14. Malinowski M., Kaczkan M., Wnuk A. and Szufliska M. (2004). J. Lumin 106:269

    Article  CAS  Google Scholar 

  15. Manalert R. and Rahaman M.N. (1996). J. Mater. Sci 31:3453

    CAS  Google Scholar 

  16. Muliuoliene I., Mathur S., Jasaitis D., Shen H., Sivakov V., Rapalaviciute R., Beganskiene A. and Kareiva A. (2003). Opt. Mater 22:241

    Article  CAS  Google Scholar 

  17. Pullar R.C., Taylor M.D., and Bhattacharya A.K. (1999). J Eur Ceram Soc 19:1747

    Article  CAS  Google Scholar 

  18. Sun Z., Yuan D., Li H., Duan X., Sun H., Wang Z., Wei X., Xu H., Luan C., Xu D. and Lv M. (2004). J. All Comp. 379:L1

    Article  CAS  Google Scholar 

  19. Tanaka H. (1995). Thermochim Acta 267:29

    Article  CAS  Google Scholar 

  20. Thiel C.W., Cruguel H., Sun Y., Lapeyre G.J., Macfarlane R.M., Equall R.W., and Cone R.L. J Lumin. 94–95 (2001) 1.

  21. Veith M., Mathur S., Kareiva A., Jilavi M., Zimmer M. and Huch V. (1999). J. Mater. Chem. 9:3069

    Article  CAS  Google Scholar 

  22. Vyazovkin S. and Wight C.A. (1997). Ann. Rev. Phys. Chem. 48:125

    Article  CAS  Google Scholar 

  23. Wuister S.F., Donega C.D., and Meijerink A. (2004). Phys. Chem. Chem. Phys. 6:1633

    Article  CAS  Google Scholar 

  24. Yada M., Ohya M., Machida M. and Kijima T. (1998). Chem Commun issue 18:1941

    Article  Google Scholar 

  25. Yang J.M., Jeng S.M., and Chang S. (1996). J. Am. Ceram. Soc. 79:1218

    Article  CAS  Google Scholar 

  26. Zhang X., Liu H., He W., Wang J., Li X. and Boughton R.I. (2004). J. All Comp. 372:300

    Article  CAS  Google Scholar 

  27. Ivanauskas F., Kareiva A. and Lapcun B. (2005). J. Math. Chem. 37:367–378

    Article  CAS  Google Scholar 

  28. Samarskij A.A. (2002). Theory of Finite Difference Schemes. Dekker, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Lapcun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanauskas, F., Kareiva, A. & Lapcun, B. Diffusion and Reaction Rates of the Yttrium Aluminium Garnet Synthesis using Different Techniques. J Math Chem 42, 191–199 (2007). https://doi.org/10.1007/s10910-006-9092-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-006-9092-y

Keywords

AMS subject classification

Navigation