Skip to main content
Log in

Combined Open Shell Hartree–Fock Theory of Atomic–Molecular and Nuclear Systems

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this study, the combined Hartree–Fock (HF) and Hartree–Fock–Roothaan equations are derived for multideterminantal single configuration states with any number of open shells of atoms, molecules and nuclei. It is shown that the postulated orbital-dependent energy and Fock operators are invariant to the unitary transformation of orbitals. This new methodology is based entirely on the spin-restricted HF theory. As an application of combined open shell theory of atomic–molecular and nuclear systems presented in this paper, we have solved Hartree–Fock–Roothaan equations for the ground state of electronic configuration C(1s 22s 22p 2) using Slater type orbitals as a basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Negele J.W. (1982). Rev. Mod. Phys. 54:913

    Article  CAS  Google Scholar 

  2. Aberg S., Flocard H., and Nazarewicz W. (1990). Annu. Rev. Nucl. Part. Sci 40:439

    Article  Google Scholar 

  3. Butler P., and Nazarewicz W. (1996). Rev. Mod. Phys 68:349

    Article  CAS  Google Scholar 

  4. Dobaczewski J., and Dudek J. (2000). Comput. Phys. Commun. 131:164

    Article  CAS  Google Scholar 

  5. Teran E., Oberacker V.E., and Umar A.S. (2003). Phys. Rev. C 67:064314

    Article  CAS  Google Scholar 

  6. Roothaan C.C.J. (1960). Rev. Mod. Phys. 32:179

    Article  Google Scholar 

  7. Levine I.N. (2000). Quantum Chemistry, 5th ed. Prentice Hall, NJ

    Google Scholar 

  8. Bartlett B.J., in: Modern Electronic Structure Theory, Vol. 1, ed. Yarkony D.R., (World Scientific, Singapore), 1995.

  9. Bishop R.F., in: Microscopic Quantum Many-Body Theories and Their Applications, Lecture Notes in Physics, Vol. 510, ed. Navarro J., and Polls A., (Springer, Berlin, 1998).

  10. Piecuch P., and Bartlett R.J. (1999). Adv. Quantum Chem. 34:295

    Article  CAS  Google Scholar 

  11. Paldus J., and Li X. (1999). Adv Chem Phys 110:1

    Article  CAS  Google Scholar 

  12. Crawford T.D., and Schaefer H.F. III (2000). Rev. Comput. Chem. 14:33

    Article  CAS  Google Scholar 

  13. Piecuch P., Kowalski K., Pimienta I.S.O. and McGuire M.J. (2002). Int. Rev. Phys. Chem 21:527

    Article  CAS  Google Scholar 

  14. Piecuch P., Kowalski K., Fan P.D., and Pimienta I.S.O., in: Progress in Theoretical Chemistry and Physics, Vol. 12, ed. Maruani J., Lefebvre R., and Brandas E., (Kluwer, Dordrecht, 2003).

  15. Kowalski K., Dean D.J., Hjorth-Jensen M., Papenbrock T., and Piecuch P. (2004). Phys. Rev. Lett. 92:132501-1

    Article  CAS  Google Scholar 

  16. Roothaan C.C.J. (1951). Rev. Mod. Phys. 23:69

    Article  CAS  Google Scholar 

  17. Silverstone H.J. (1977). J. Chem. Phys. 67:4172

    Article  CAS  Google Scholar 

  18. Carbo R., and Riera J.M. (1978). Lecture Notes in Chemistry, Vol. 5: A General SCF Theory. Springer, Berlin

    Google Scholar 

  19. Fick G., and Wirsich J. (1980). Int. J. Quantum Chem. 18:753

    Article  Google Scholar 

  20. Haser M. (1991). J. Chem. Phys. 95:8259

    Article  CAS  Google Scholar 

  21. Murray C.W., and Davidson E.R. (1991). Chem. Phys Lett 187:451

    Article  CAS  Google Scholar 

  22. Murray C.W., and Davidson E.R. (1992). Int. J. Quantum Chem. 43:755

    Article  CAS  Google Scholar 

  23. Kozlowski P.M., and Davidson E.R. (1994). Chem. Phys. Lett. 226:440

    Article  CAS  Google Scholar 

  24. Guseinov I.I. (1998). J. Mol. Struct. (Theochem) 422:69

    Article  CAS  Google Scholar 

  25. Guseinov I.I. (1998). J. Mol. Struct. (Theochem) 422:75

    Article  CAS  Google Scholar 

  26. Slater J.C. (1960). Quantum Theory of Atomic Structure, Vol II. McGraw-Hill, London

    Google Scholar 

  27. Slater J.C., Phys. Rev. 34 (1929) 1293; 38 (1931) 11109.

  28. Clementi E., and Raimondi D.L. (1963). J. Chem. Phys. 38:2686

    Article  CAS  Google Scholar 

  29. Ema I., Vega J., Miguel B., Dotterweich J., Meitner H., and Steinborn E.O. (1999). At. Data Nucl. Data Tables 72:57

    Article  CAS  Google Scholar 

  30. I. I. Guseinov, Int. J. Quantum Chem. 90 (2002) 114, 90 (2002) 980; J. Mol. Model. 9 (2003) 135, 9 (2003) 190, 10 (2004) 19, 10 (2004) 212, 11 (2005) 124; J. Chem. Phys. 119 (2003) 4614, 120 (2004) 9454; J. Mol. Struct. (Theochem) 625 (2003) 221, 719 (2005) 53; J. Math. Chem. 36 (2004) 83, 38 (2005) 489; J. Phys. A. Math. Gen. 37 (2004) 957; Can. J. Phys. 82 (2004) 819; Chem. Phys. 309 (2005) 209; Bull. Chem. Soc. Jpn. 78 (2005) 611.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Guseinov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guseinov, I.I. Combined Open Shell Hartree–Fock Theory of Atomic–Molecular and Nuclear Systems. J Math Chem 42, 177–189 (2007). https://doi.org/10.1007/s10910-006-9090-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-006-9090-0

Keywords

Navigation